K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

a) x5 + x +1

=x5-x4+x4-x3+x3-x2+x2+x+1

=(x5+x4+x3)-(x4+x3+x2)+(x2+x+1)

=x3(x2+x+1)-x2(x2+x+1)+(x2+x+1)

=(x2+x+1)(x3-x2+1)

b,c,d làm tương tự câu a

nhớ tích cho mình với nhé

29 tháng 10 2015

a, x( x4 + 1 + 1 ) 

= x5 + 2 

chắc z ! 

29 tháng 10 2018

\(x^8+x^7+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)

\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

2 tháng 11 2018

\(x^5-x^4-1\)

\(=x^5-x^3-x^2-x^4+x^2+x+x^3-x-1\)

\(=x^2\left(x^3-x-1\right)-x\left(x^3-x-1\right)+\left(x^3-x-1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

19 tháng 11 2016

a, x8 + x7 + 1

=x2 (x6 - 1) + x (x6 - 1) +(x2 + x + 1)

= (x6 _ 1)(x2 + x) + (x2 + x +1)

= (x3 - 1)(x3 + 1)( x2 + x) + (x2 + x +1)

=(x - 1)(x2 + x +1)( x2 + x) + (x2 + x +1)

=(x2 + x +1)((x - 1)( x2 + x) +1)

=(x2 + x +1)(x3 + 1)

b, x5 - x4-1

c, x7+x5 + 1

d,x8 + x4 +1

Chú ý: Các đa thức có dạng: x3m+1+x3n+2+1 như x7+x2+1; x7+x5+1; x8 + x4 +1;

x5+x+1; x8+x+1 đều có nhân tử chung là x2 + x +1

Các phần còn lại tương tự nhé!!!

19 tháng 11 2016

cảm ơn ạ

8 tháng 9 2014

a) x3-3x+2= x3-1-3x+3= (x-1)(x2+x+1)-3(x-1)= (x-1)(x2+x+1-3)= (x-1)(x2+x-2)

5 tháng 11 2014

c,x8+x7+x6+x5+x4+x3+x2+x+1

=(x8+x7+x6)+(x5+x4+x3)+(x2+x+1)

=x6(x2+x+1)+x3(x2+x+1)+(x2+x+1)

=(x2+x+1)(x6+x3+1)

b. x4 - x2 - 2x - 1

=x4-(x2+2x+1)

=x4-(x+1)2

=(x2-x-1)(x2+x+1)

d. ( x2 + 3x + 1 ) ( x2 + 3x - 3 ) - 5

Đặt x2+3x=y

=> (y+1)(y-3)-5=y2-2y-8=(y-1)2-9

=(y-4)(y+2)

=(x2+3x-4)(x2+3x+2)=(x-1)(x+4)(x+1)(x+2)

12 tháng 8 2016

bài a) bn trên đã dẫn link cho bn r

bài b)

Đặt x-y=a;y-z=b;z-x=c 

\(=>a+b+c=x-y+y-z+z-x=0\)

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)

Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)

\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

a) Ta có :

\(a^3+b^3+c^3-3abc\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

P/s tham khảo nha

hok tốt