\(\dfrac{n}{n+1}\) là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2024

a)gọi d=ƯCLN(n;n+1)

Ta có 

      n⋮d

      n+1⋮d

=>n+1-n⋮d

=>1⋮d

=>d=1

Vậy ps n/n+1 là ps tối giản

15 tháng 3 2024

a) 
Giả sử n/n + 1 có thể rút gọn được. Khi đó, n và n + 1 phải có ước số chung khác 1.
Ta có: n + 1 = n + 1 + 0 = n + (n + 1) = 2n + 1

Vì n và n + 1 có ước số chung khác 1, nên 2n + 1 cũng phải chia hết cho ước số chung đó.
Tuy nhiên, 2n + 1 là số lẻ, mà một số lẻ không thể chia hết cho một số chẵn (trừ số 2) khác 1.

Do đó, giả thiết n/n + 1 có thể rút gọn là sai.

Vậy, n/n + 1 là phân số tối giản.

b)Gọi d là ước số chung của n + 2 và 2n + 3 (d ≠ 1)

Ta có: n + 2 chia hết cho d và 2n + 3 chia hết cho d

Suy ra: 2(n + 2) - (2n + 3) chia hết cho d hay 1 chia hết cho d.

Điều này vô lý vì d ≠ 1.

Vậy, n + 2 / 2n + 3 là phân số tối giản.

8 tháng 2 2018

Phân số \(\frac{2n+3}{3n+5}\)tối giản nếu ước chung lớn nhất của tử và mẫu là 1 hoặc -1

Gọi \(ƯCLN\left(2n+3;3n+5\right)=d\)ta có :

\(\left(2n+3\right)⋮d;\left(3n+5\right)⋮d\)

\(\Leftrightarrow\)\(3\left(2n+3\right)⋮d;2\left(3n+5\right)⋮d\)

\(\Leftrightarrow\)\(\left(6n+9\right)⋮d;\left(6n+10\right)⋮d\)

\(\Leftrightarrow\)\(\left(6n+9-6n-10\right)⋮d\)

\(\Leftrightarrow\)\(\left(-1\right)⋮d\)

Suy ra \(d\inƯ\left(-1\right)\)

Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)

Do đó \(d\in\left\{1;-1\right\}\)

Vật phân số \(\frac{2n+3}{3n+5}\)tối giản 

24 tháng 1 2018

a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

25 tháng 1 2018

, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: ⎧⎨⎩n+1⋮d2n+3⋮d⇒⎧⎨⎩2n+2⋮d2n+3⋮d{n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d

⇒2n+3−(2n+2)⋮d⇒2n+3−(2n+2)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: ⎧⎨⎩2n+3⋮d4n+8⋮d⇒⎧⎨⎩4n+6⋮d4n+8⋮d{2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d

⇒4n+8−(4n+6)⋮d⇒4n+8−(4n+6)⋮d

⇒2⋮d⇒2⋮d

⇒d∈{1;2}⇒d∈{1;2}

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: ⎧⎨⎩3n+2⋮d5n+3⋮d⇒⎧⎨⎩15n+10⋮d15n+9⋮d{3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d

⇒15n+10−(15n+9)⋮d⇒15n+10−(15n+9)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

18 tháng 3 2021

Gọi d là ước chung của 2n+3 và n+2

\(2n+3⋮d\)

\(n+2⋮d\Rightarrow2n+4⋮d\)

\(\Rightarrow2n+4-2n-3=1⋮d\Rightarrow d=1\)

\(\Rightarrow\frac{2n+3}{n+2}\) là phân số tối giản

18 tháng 3 2021

nếu k có điều kiện của n thì d còn có thể = -1

30 tháng 4 2017

a)gọi d là ƯCLN(n+1;2n+3)

=>2n+3 chia hết cho d

và n+1 chia hết cho d

=>2(n+1) chia hết cho d

=>2n+3-2(n+1)chia hết cho d

hay 1chia hết cho d

=>d=1

=>phân số \(\dfrac{n+1}{2n+3}\)tối giản

b)Gọi d là ƯCLN(2n+3;4n+8)

=>4n+8chia hết cho d

và 2n+3 chia hết cho d

=>2(2n+3) chia hết cho d

=>4n+8-2(2n+3) chia hết cho d

hay 2 chia hết cho d

Do 2n+3 là số lẻ và 2n+3 chia hết cho d

=>d không thể là số chẵn=>d=1

=>phân số \(\dfrac{2n+3}{4n+8}\) tối giản

9 tháng 5 2017

Gọi d=ƯCLN (n+1 ; 2n+3)

Do đó d thuộc ƯC (n+1 ; 2n+3)

=> n+1 chia hết cho d ; 2n+3 chia hết cho d

=> 2n+2 chia hết cho d ; 2n+3 chia hết cho d

=> (2n+3)-(2n+2) chia hết cho d

=> 1 chia hết cho d

=> n+1 và 2n+3 là hai số nguyên tố cùng nhau

=> n+1/2n+3 là phân số tối giản với mọi số n.

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

14 tháng 6 2017

a, Gọi d là ước chung của 21n + 4 và 14n + 3 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)

+) Vì : \(21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

+) Vì : \(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow42n+9-48n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{1;-1\right\}\) => \(\dfrac{21n+4}{14n+3}\) là phân số tối giản

b, tương tự

c, Gọi d là ước chung của 2n + 3 và n2 + 3n + 2 \(\left(d\in Z,d\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\n^2+3n+2⋮d\end{matrix}\right.\)

+) Vì \(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)

+) Vì : \(n^2+3n+2⋮d\Rightarrow2\left(n^2+3n+2\right)⋮d\Rightarrow2n^2+6n+4⋮d\)

Mà : \(2n^2+3n⋮d\)

\(\Rightarrow\left(2n^2+6n+4\right)-\left(2n^2+3n\right)⋮d\)

\(\Rightarrow2n^2+6n+4-2n^2-3n⋮d\Rightarrow3n+4⋮d\)

\(\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)

Vì : \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{-1;1\right\}\Rightarrow\dfrac{2n+3}{n^2+3n+2}\) là phân số tối giản

d, tương tự câu c

15 tháng 6 2017

Mình làm 1 câu thôi các câu sau bạn làm theo mẫu nhé

Gọi d là UCLN(21n+4;14n+3)

\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

\(\Leftrightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(42n+8;42n+9⋮d\)

\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n

20 tháng 3 2018

Vì n thuộc Z => n có dạng \(\frac{c}{b}\)(c \(⋮\) b)

=> n + \(\frac{a}{b}\)\(\frac{c}{b}+\frac{a}{b}=\frac{c+a}{b}\) 

vì c\(⋮\) b , a \(⋮\) b (\(\frac{a}{b}\) là phân số tối giản )

=> a+c \(⋮\) b

=> \(\frac{a+c}{b}\) là số tối giản

=> n + \(\frac{a}{b}\) là phân số tối giản

4 tháng 3 2019

ta có:

Gọi d là ước chung của 2x+5 và 2x+3

ta có: 2x+5-(2x+3) chia hết cho d

hay 2 chia hết cho d

=> d thuộc ước của 2

mà 2x+3 và 2x+5 là số lẻ

suy ra d là số lẻ

vậy d=1

hay 2x+5/2x+3 là p/s tối giản

hok tốt

k chị nha

20 tháng 7 2020

Gọi d là ước chung của 2n+5 và 2n+3

=> 2n+5 chia hết cho d và 2n+3 chia hết cho d

=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}

Do 2n+5 và 2n+3 lẻ => d lẻ => d=1

=> phân số trên tối giản với mọi n

21 tháng 7 2020

Cảm ơn bạn NGUYỄN NGỌC ANH MINH nhiều