Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{5}{6}-2\sqrt{\frac{4}{9}}+\sqrt{\left(-2\right)^2}\)
\(=\frac{5}{6}-2.\frac{2}{3}+2\)
\(=\frac{5}{6}-\frac{4}{6}+\frac{12}{6}\)
\(=\frac{5-4+12}{6}=\frac{13}{6}\)
\(b,\left(-3\right)^2.\left(\frac{1}{3}\right)^3:\left[\left(-\frac{2}{3}\right)^3-1\frac{1}{3}\right]-\left(-200\right)^0\)
\(=9.\frac{1}{27}:\left(-\frac{8}{27}-\frac{5}{3}\right)-1\)
\(=\frac{1}{3}:\left(-\frac{8}{27}-\frac{45}{27}\right)-1\)
\(=\frac{1}{3}:\left(-\frac{53}{27}\right)-1\)
\(=\frac{1}{3}.\left(-\frac{27}{53}\right)-1\)
\(=-\frac{9}{53}-1=-\frac{9}{53}-\frac{53}{53}\)
\(=-\frac{62}{53}\)
\(c,\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):2\)
\(=\left(-\frac{1}{2}-\frac{3}{5}\right).\frac{1}{3}+\frac{1}{3}-\left(-\frac{1}{6}\right).\left(-\frac{1}{2}\right)\)
\(=\left(-\frac{5}{10}-\frac{6}{10}\right).\frac{1}{3}+\frac{1}{3}-\frac{1}{12}\)
\(=-\frac{11}{10}.\frac{1}{3}+\frac{1}{3}-\frac{1}{12}\)
\(=\frac{1}{3}\left(-\frac{11}{10}-\frac{1}{12}\right)\)
\(=\frac{1}{3}\left(-\frac{66}{60}-\frac{5}{60}\right)\)
\(=\frac{1}{3}.\left(-\frac{71}{60}\right)\)
\(=-\frac{71}{180}\)
1, xét tam giác BDA và tam giác BEC có : ^ABC chung
^BEC = ^BDA = 90
=> tam giác BDA đồng dạng với tam giác BEC (g-g)
=> ^BAD = ^BCE
2, xét tam giác HEA và tam giác BDA có : ^BAD chung
^HEA = ^BDA = 90
=> tam giác HEA đồng dạng với tg BDA (g-g)
=> ^AHE = ^ABD
3, có : ^AHE = ^ACB mà AHE = 60 => ^ABC = 60
có ^BAC + ^BAD = 90 => ^BAD = 30
mà ^BAD + ^DAC = 30 + 45 = 75 = ^BAC
XONG tính ra ^C
1 . Ta có :
AP // BC ( gt )
góc PAC và góc BCA ở vị trí so le trong
Suy ra : góc PAC = góc BCA
Xét tam giác PNA và tam giác MNC , ta có :
góc ANP = góc MNC ( đối đỉnh )
AN = NC ( N là trung điểm AC )
góc PAN = góc NCM ( cmt )
Do đó : tam giác PNA = tam giác MNC
b . Xét tứ giác AMPC , ta có :
AP // MC ( AP // BC )
AP = MC ( tam giác PNA = tam giác MNC )
Suy ra : tứ giác AMPC là hình bình hành
=> PC = AM
a) \(\frac{1985.1987-1}{1980+1985.1986}=\frac{1985.1986+1985-1}{1980+1985.1986}=\frac{1985.1986+1984}{1985.1986+1980}>\frac{1985.1986+1980}{1985.1986+1980}=1\)
b) \(A=\frac{13^{15}+1}{13^{16}+1}=\frac{13^{15}+\frac{1}{13}+\frac{12}{13}}{13^{16}+1}=\frac{\frac{1}{13}\left(13^{16}+1\right)+\frac{12}{13}}{13^{16}+1}=\frac{1}{13}+\frac{12}{13\left(13^{16}+1\right)}\)
\(B=\frac{13^{16}+1}{13^{17}+1}=\frac{13^{16}+\frac{1}{13}+\frac{12}{13}}{13^{17}+1}=\frac{\frac{1}{13}\left(13^{17}+1\right)+\frac{12}{13}}{13^{17}+1}=\frac{1}{13}+\frac{12}{13\left(13^{17}+1\right)}\)
Có \(13^{16}+1< 13^{17}+1\)nên \(\frac{12}{13\left(13^{16}+1\right)}>\frac{12}{13\left(13^{17}+1\right)}\)
Vậy \(A>B\).
\(1.\) \(P=15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)
\(=\left(15\frac{1}{4}-25\frac{1}{4}\right)\cdot\left(-\frac{7}{5}\right)\)
\(=\left(-10\right)\cdot\left(-\frac{7}{5}\right)\)
\(=14\)
vậy P=14
\(2.\) \(\left(\frac{21}{10}-|x+2|\right):\left(\frac{19}{10}-\frac{7}{5}\right)+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{10}-|x+2|\right):\frac{1}{2}+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{10}-|x+2|\right)\cdot2+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{5}-|x+2|\right)+\frac{4}{5}=1\)
\(\Rightarrow\frac{21}{5}-|x+2|=\frac{1}{5}\)
\(\Rightarrow|x+2|=4\)
\(\Rightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
vậy \(x\in\left\{2;-6\right\}\)
bài 1
ta có \(P=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)=-10:\left(-\frac{5}{7}\right)=-10\times-\frac{7}{5}=14\)
2.\(\left(\frac{21}{10}-\left|x+2\right|\right):\left(\frac{19}{10}-\frac{14}{10}\right)+\frac{4}{5}=1\)
\(\Leftrightarrow\left(\frac{21}{10}-\left|x+2\right|\right):\frac{5}{10}=\frac{1}{5}\Leftrightarrow\frac{21}{10}-\left|x+2\right|=\frac{2}{5}\)
\(\Leftrightarrow\left|x+2\right|=\frac{21}{10}-\frac{2}{5}=\frac{17}{10}\Leftrightarrow\orbr{\begin{cases}x+2=\frac{17}{10}\\x+2=-\frac{17}{10}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{10}\\x=-\frac{37}{10}\end{cases}}}\)