K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2020

đk: \(x\ge0\)

Ta có: \(\sqrt{x}+2\sqrt{x+3}=x+4\)

\(\Leftrightarrow\left(x+3\right)-2\sqrt{x+3}+1=\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}-1\right)^2}=\sqrt{x}-1\)

\(\Leftrightarrow\left|\sqrt{x-3}-1\right|=\sqrt{x}-1\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}-1=\sqrt{x}-1\\\sqrt{x-3}-1=1-\sqrt{x}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=\sqrt{x}\left(ktm\right)\\\sqrt{x-3}+\sqrt{x}=2\end{cases}}\)

\(\Leftrightarrow x-3+x+2\sqrt{x\left(x-3\right)}=4\)

\(\Leftrightarrow2\sqrt{x^2-3x}=7-2x\)

\(\Leftrightarrow4\left(x^2-3x\right)=\left(7-2x\right)^2\)

\(\Leftrightarrow4x^2-12x=49-28x+4x^2\)

\(\Leftrightarrow16x=49\)

\(\Rightarrow x=\frac{49}{16}\)

2 tháng 9 2020

\(( \sqrt{x+3}-1)^2\) chứ bạn.

với cả là \(\sqrt{x+3}\)  mà   có phải \(\sqrt{x-3} \)  đâu

 
NM
5 tháng 9 2021

đây là bài lớp 10 chứ nhỉ

ta có \(AC=20\times2=40\text{ hải lí}\)\(AB=15\times2=30\text{ hải lí}\)

áp dụng định lý cosin ta có :

\(BC=\sqrt{AB^2+AC^2-2AB.AC\text{c}osA}=\sqrt{40^2+30^2-2\times30\times40\times cos60^o}\simeq36.06\text{ hải lí}\)

DD
14 tháng 10 2021

1.3 Giải phương trình: 

a) \(\sqrt{2x+3}=1+\sqrt{2}\)(ĐK: \(x\ge-\frac{3}{2}\)

\(\Leftrightarrow2x+3=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\)

\(\Leftrightarrow2x=2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{2}\)(tm) 

b) \(\sqrt{x+1}=\sqrt{5}+3\)(ĐK: \(x\ge-1\)

\(\Leftrightarrow x+1=\left(\sqrt{5}+3\right)^2=14+6\sqrt{5}\)

\(\Leftrightarrow x=13+6\sqrt{5}\)(tm) 

c) \(\sqrt{3x-2}=2-\sqrt{3}\)(ĐK: \(x\ge\frac{2}{3}\))

\(\Leftrightarrow3x-2=\left(2-\sqrt{3}\right)^2=7-4\sqrt{3}\)

\(\Leftrightarrow x=\frac{9-4\sqrt{3}}{3}\)(tm) 

1.4: Phân tích thành nhân tử: 

a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)

b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)

\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)

DD
20 tháng 8 2021

\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)

Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).

Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).

Do đó ta có đpcm.