K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

ko đc đăng câu hỏi bằng hình ảnh

18 tháng 12 2016

Kệ Người ta nhiều chuyện

 

7 tháng 8 2017

\(\dfrac{\sqrt{12}-\sqrt{18}}{\sqrt{6}-3}-\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{2.6}-\sqrt{2.9}}{\sqrt{6}-3}=\dfrac{\sqrt{2}\left(\sqrt{6}-3\right)}{\sqrt{6}-3}=\sqrt{2}\)

\(\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\dfrac{2\sqrt{2.3}-\sqrt{2.8}}{\sqrt{3}-\sqrt{2}}=\dfrac{2\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=2\sqrt{2}\)

Vậy \(\dfrac{\sqrt{12}-\sqrt{18}}{\sqrt{6}-2}-\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\sqrt{2}-2\sqrt{2}=-\sqrt{2}\)

7 tháng 8 2017

\(\sqrt{11+4\sqrt{7}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}=\sqrt{\left(2+\sqrt{7}\right)^2}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2+\sqrt{7}+\sqrt{2}\)

Vậy \(\sqrt{11+4\sqrt{7}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\dfrac{3}{\sqrt{7}-2}=2+\sqrt{7}+\sqrt{2}-\dfrac{3}{\sqrt{7}-2}=\dfrac{\sqrt{2}\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=\sqrt{2}\)

15 tháng 12 2016

. . A B O H C D I

a) Vì AD là tiếp tuyến của (O)

=> \(AD\perp AB\)

=> \(\widehat{DAB}=90^o\)

CÓ: OA=OB=OC(=R)

=> CO là tiếp tuyến của ΔABC

Mà: \(CO=\frac{1}{1}AB\left(cmt\right)\)

=> ΔABC vuông tại C

=> \(AC\perp BC\)

Xét ΔABD vuông tại A(cmt), mà AC là đường cao(cmt)

=> \(BC\cdot BD=AB^2\) ( theo hệ thức trong tam giác vuông)

=> \(BC\cdot BD=\left(2\cdot OB\right)^2=4R^2\)

b) Có: OA=OC(cmt)

=> ΔOAC cân tại O

=> \(\widehat{ACO}=\widehat{CAO}\)

Xét ΔACD vuông tại C(cmt)

mà: CI là tiếp tuyến ứng vs cạnh AD

=> IC=IA

=> ΔIAC cân tại I

=> \(\widehat{IAC}=\widehat{ICA}\)

Có: \(\widehat{IAC}+\widehat{CAO}=\widehat{DAB}=90^o\)

=> \(\widehat{ICA}+\widehat{ACO}=90^o\)

Hay: \(\widehat{ICO}=90^o\)

=> IC là tiếp tuyến của (O)

Phần c đề sai

15 tháng 12 2016

Cảm ơn bạn ha ^^

6 tháng 8 2017

Bài 1 :

\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)

\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)

\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)

6 tháng 8 2017

Siêu quá, toán lớp 9 mà làm được rùi!

22 tháng 7 2021

-11/abc 

15 tháng 9 2017

6.

a. \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=2\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}=2\)

\(\Leftrightarrow\left|x-1\right|+\left|x-3\right|=2\) (*)

Xét \(x< 1\):

(*) \(\Leftrightarrow1-x+3-x=2\)

\(\Leftrightarrow-2x=-2\)

\(\Leftrightarrow x=1\left(ktm\right)\)

Xét \(1\le x< 3\) :

(*) \(\Leftrightarrow x-1+3-x=2\)

\(\Leftrightarrow2=2\left(vô.số.nghiệm\right)\)

Xét \(x\ge3\) :

(*) \(\Leftrightarrow x-1+x-3=2\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\left(tm\right)\)

Vậy pt đã cho có nghiệm thỏa \(1\le x\le3\).

b. \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) (ĐK: \(1\ge x\ge\dfrac{1}{2}\))

\(\Leftrightarrow x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-\sqrt{\left(2x-1\right)^2}}=2\)

\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)^2}=2-2x\)

\(\Leftrightarrow\left|x-1\right|=1-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1-x\\x-1=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\0=0\left(vô.số.nghiệm\right)\end{matrix}\right.\)

Vậy pt đã cho có nghiệm thỏa \(1\ge x\ge\dfrac{1}{2}\)

16 tháng 8 2017

Mọi người giúp mình với 2h mình đi học rùi