![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
20
Gọi n là số con cá trên một đơn vị diện tích hồ (n>0). Khi đó:
Cân nặng của một con cá là: P(n)=480−20nP(n)=480−20n
Cân nặng của n con cá là:nP(n)=480n−20n2,n>0nP(n)=480n−20n2,n>0
Xét hàm số:f(n)=480n−20n2,n>0f(n)=480n−20n2,n>0
Ta có:
f′(n)=480−40nf′(n)=0⇔n=12f′(n)=480−40nf′(n)=0⇔n=12
Lập bảng biến thiên ta thấy số cá phải thả trên một đơn vị diện tích hồ để có thu hoạch nhiều nhất là 12 con.
19 Gọi H là chân đường vuông góc kẻ từ A.
Áp dụng định lý Ta-lét cho các tam giác BAH và ABC ta được:
nên diện tích của hình chữ nhật sẽ là:
Vì không đổi nên S phụ thuộc tích BQ.AQ mà
(bđt Cauchy)
nên
Dấu bằng xra khi BQ=AQ=>M là trung điểm AH
![](https://rs.olm.vn/images/avt/0.png?1311)
21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)
=> (P):2x - y +z - 6 = 0. ĐA: D
22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C
34. ĐA: A.
37. M --->Ox: A(3; 0; 0)
Oy: B(0; 1; 0)
Oz: C(0; 0;2)
Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 31 thử ĐA
Câu 33: có công thức
Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d
\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D
Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
nhờ người ta giải mà cười hihi
em thì bó tay chấm chữ com vào ăn
TXĐ: D=R
\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)
\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)
Đặt t = \(3^{x^2+x-1}\) (t>0)
\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 64:
Ta có:
\(6^x+(3-m)2^x-m=0\)
\(\Leftrightarrow 6^x+3.2^x=m(1+2^x)\)
\(\Leftrightarrow \frac{6^x+3.2^x}{2^x+1}-m=0\)
Xét \(f(x)=\frac{6^x+3.2^x}{2^x+1}-m\) là một hàm liên tục. Để pt \(f(x)=0\) có nghiệm trong khoảng \((0;1)\Rightarrow f(0).f(1)< 0\)
\(\Leftrightarrow (2-m)(4-m)< 0\)
\(\Leftrightarrow 2< m< 4\Leftrightarrow m\in (2;4)\)
Đáp án C
Câu 65:
Ta có:
\(P=\log^2_{\frac{a}{b}}a^2+3\log_b\left(\frac{a}{b}\right)\)
\(\Leftrightarrow P=[2\log_{\frac{a}{b}}a]^2+3\log_b\left(\frac{a}{b}\right)\)
\(\Leftrightarrow P=4\log^2_{\frac{a}{b}}a+3(\log_ba-\log_bb)\)
\(\Leftrightarrow P=4\log^2_{\frac{a}{b}}a+3(\log_ba-1)\)
Biến đổi: \(\log_{\frac{a}{b}}a.\log_a\left(\frac{a}{b}\right)=1\)
\(\Rightarrow \log_{\frac{a}{b}}a=\frac{1}{\log_a\left(\frac{a}{b}\right)}=\frac{1}{\log_aa-\log_ab}=\frac{1}{1-\log_ab}\)
Do đó, \(P=\frac{4}{(1-\log_ab)^2}+3(\log_ba-1)\)
Đặt \(\log_ba=x\Rightarrow \log_ab=\frac{1}{x}\)
\(P=\frac{4x^2}{(x-1)^2}+3(x-1)\). Vì \(a>b>1\Rightarrow x>1\)
\(P'=\frac{3x^3-9x^2+x-3}{(x-1)^3}=0\)
\(\Leftrightarrow 3x^3-9x^2+x-3=0\Leftrightarrow x=3\)
Lập bảng biến thiên ta suy ra \(P_{\min}=P(3)=15\)
Đáp án D