Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=x(x+1)(x+2)(x+3)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)
Đặt \(t=x^2+3x\) ta đc:
\(t\left(t+2\right)\)\(=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\)
Dấu = khi \(t=-1\Rightarrow x^2+3x=-1\)\(\Rightarrow\)\(x=\frac{-3\pm\sqrt{5}}{2}\)
Vậy MinA=-1 khi \(x=\frac{-3\pm\sqrt{5}}{2}\)
b)\(B=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Với a,b,c dương ta áp dụng Bđt Cô si 3 số:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Dấu = khi a=b=c
Vậy MinB=9 khi a=b=c
c)\(C=a^2+b^2+c^2\)
Áp dụng Bđt Bunhiacopski 3 cặp số ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2=\left(\frac{3}{2}\right)^2=\frac{9}{4}\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
\(\Rightarrow C\ge\frac{3}{4}\)
Dấu = khi \(a=b=c=\frac{1}{2}\)
Vậy MinC=\(\frac{3}{4}\) khi \(a=b=c=\frac{1}{2}\)
\(A=\left(a+b\right)^3-3ab\left(a+b\right)+ab\left(a+b\right)\)
\(=1-3ab+ab=1-2ab\)
\(=1-2a\left(1-a\right)=2a^2-2a+1\)
\(=\dfrac{1}{2}\left(4a^2-4a+1\right)+\dfrac{1}{2}=\dfrac{1}{2}\left(2a-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
\(\Rightarrow A_{min}=\dfrac{1}{2}\) khi \(a=b=\dfrac{1}{2}\)