Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử c chẵn khi đó ta có:
\(v_2\left(c\right)=v_2\left(5c+2b\right)+v_2\left(2c+b\right)\)
Nếu b lẻ thì ta có: \(v_2\left(c\right)=v_2\left(5c+2b\right)=v_2\left(5c\right)\Rightarrow v_2\left(5c\right)< v_2\left(2b\right)=1\)
Điều này vô lý!
Do đó c lẻ: Xét p|c là 1 ước nguyên tố của c
Ta có: \(v_p\left(c\right)=v_p\left(5c+2b\right)+v_p\left(2c+b\right)\)
Ta thấy \(v_p\left(c\right)>v_p\left(5c+2b\right);v_p\left(2c+b\right)>0\)
Do đó: \(v_p\left(5c+2b\right)=min\left[v_p\left(c\right);v_p\left(4c+2b\right)\right]\)
\(\Rightarrow v_p\left(5c+2b\right)=v_p\left(4c+2b\right)=v_p\left(2c+b\right)\)
\(\Rightarrow v_p\left(c\right)=2v_p\left(5c+2b\right):\)số chẵn nên => c là số chính phương.(đpcm)
bài 1: Gọi 2 số chính phương liên tiếp là a\(^2\) và (a+1)\(^2\)( vs a\(\in\) N )
CM :S=a\(^2\) +(a+1)\(^2\)+a\(^2\).(a+1)\(^2\) là số chính phương
Thật vậy : S= a\(^2\) +(a+1)\(^2\)+a\(^2\).(a+2a+1)
= a\(^2\)+a\(^2\)+2a+1+a\(^4\)+2a\(^3\)+a\(^2\)
= (a\(^2\))\(^2\)+a\(^2\)+1\(^2\)+2.a\(^2\).a+a+2a\(^2\).1+2a.1
= (a\(^2\)+a+1)\(^2\) là số chính phương (đpcm)
Cho 2 số tự nhiên a,b thoả mãn \(a^2+a=2b^2+b\). Cmr : \(a-b\)và \(a+b+1\)đều là các số chính phương
\(\left[\left(x+1\right).\left(x+4\right)\right].\left[\left(x+2\right).\left(x+3\right)\right]-24\)
\(=\left(x^2+5x+4\right).\left(x^2+5x+6\right)-24\)
Đặt m=x2+5x+4, ta có:
\(m.\left(m+2\right)-24=m^2+2m-24=m^2+6m-4m-24\)
\(=m.\left(m+6\right)-4.\left(m+6\right)=\left(m-4\right).\left(m+6\right)\)
Tự làm tiếp :v
\(1.a\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
\(=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24\)
\(=\left(x^2+5x+5\right)^2-1-24\)
\(=\left(x^2+5x+5\right)^2-25\)
\(=\left(x^2+5x+5+5\right)\left(x^2+5x+5-5\right)\)
\(=\left(x^2+5x+10\right)\left(x^2+5x\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
\(b.x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(2.a\) Đặt \(a=\frac{x+3}{x-2},b=\frac{x-3}{x+2}\)
Thay vào PT ta được:\(a^2+6b^2=7ab\)
\(\Leftrightarrow a^2-7ab+6b^2=0\)
\(\Leftrightarrow a^2-ab-6ab+6b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a-6b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=\left(6x-18\right)\left(x-2\right)\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1hayx=6\end{cases}}\) (bước kia dài bạn tự làm nhé)
\(A=\left(2n^2\right)^2+2.\left(2n^2\right).\left(3n\right)+\left(3n\right)^2-4n^2-6n+1\)
\(=\left(2n^2+3n\right)^2-2.\left(2n^2+3n\right)+1=\left(2n^2+3n-1\right)^2\)