K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5

Đề bài đâu bạn??

2 tháng 5

đề bài đâu hả bạn


NV
5 tháng 8 2020

Khi delta dương pt \(y'=0\) có hai nghiệm pb, ko mất tính tổng quát, giả sử \(x_1< x_2\)

Hệ số a=1 dương nên ta có dấu của \(y'\) như sau:

Bài 1: Sự đồng biến và nghịch biến của hàm số

Do đó \(y'\ge0\) trên miền \([x_2;+\infty)\)

Để \(y'>0\) trên \(\left(1;+\infty\right)\) thì \(\left(1;+\infty\right)\) phải là tập con của \([x_2;+\infty)\) hay \(x_2\le1\)

NV
5 tháng 8 2020

\(y'=1-\frac{m}{\left(x-m\right)^2}=\frac{x^2-2mx+m^2-m}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên khoảng đã cho thì hàm cần xác định và có đạo hàm không âm trên khoảng đó

- Để hàm số xác định trên khoảng thì \(m\le1\)

- Để \(x^2-2mx+m^2-m\ge0;\forall x>1\)

\(\Delta'=m^2-m^2+m=m\)

TH1: \(\Delta'\le0\Leftrightarrow m\le0\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left(x_1-1\right)\left(x_2-1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-3m+1\ge0\\2m< 2\end{matrix}\right.\)

\(\Rightarrow0< m\le\frac{3-\sqrt{5}}{2}\)

Vậy \(m\le\frac{3-\sqrt{5}}{2}\)

AH
Akai Haruma
Giáo viên
15 tháng 11 2017

Lời giải:

Ta có: \(4^x+2^x=4x+2\) \(\Leftrightarrow 4^x+2^x-4x-2=0\)

Đặt \(f(x)=4^x+2^x-4x-2\)

\(\Rightarrow f'(x)=\ln 4.4^x+\ln 2.2^x-4\)

\(f'(x)=\ln 4(2^x)^2+\ln 2.2^x-4=0\Leftrightarrow \) \(\left[{}\begin{matrix}2^x\approx-1.96\left(vl\right)\\2^x=1.47\end{matrix}\right.\)

\(\Leftrightarrow x\approx \log_2(1.47)\)

Lập bảng biến thiên:

Chương 2: Hàm số  lũy thừa, hàm số mũ và hàm số loagrit

Từ bảng biến thiên ta suy ra pt \(f(x)=0\) có nghiệm \(x=\left\{0;1\right\}\)

19 tháng 11 2017

em cảm ơn ạ!

10 tháng 7 2016

 

a)ĐK: 2x+1>0

\(\log_3\left(2x+1\right)=2\log_{2x+1}3+1\)

\(\Leftrightarrow log_3\left(2x+1\right)=2.\frac{1}{log_3\left(2x+1\right)}+1\)

Nhân \(log_3\left(2x+1\right)\)cả 2 vế

Đặt \(t=log_3\left(2x+1\right)\)

\(\Leftrightarrow t^2-t-2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=-1\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=9\\2x+1=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-\frac{1}{3}\end{array}\right.\)nhận cả 2 nghiệm

b)ĐK x>0

\(\Leftrightarrow1+log^2_{27}x=\frac{10}{3}log_{27}x\)

Đặt \(t=log_{27}x\)

\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\left[\begin{array}{nghiempt}x=27^3\\x=3\end{array}\right.\)

 

25 tháng 5 2016

chữ nhỏ quá mk ko thấy  j cả

25 tháng 5 2016

bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với

9 tháng 2 2022

Hôm bữa bên CLB của ĐH Bách Khoa Hồ Chí Minh có tổ chức ấy bạn, cơ mà chắc hết rùi :D Btw, có thầy gì admin page Luyện thi đánh giá năng lực hồi năm ngoái mình có follow thấy thầy cũng tổ chức thường xuyên lắm nè :v 

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Đừng quan tâm cái \(k2\pi\) đi, lấy nghiệm là số cố định thôi. Ví dụ \(\cos x=1\) thì bạn tìm được dấu bằng xảy ra khi \(x=0\)

8 tháng 7 2017

nghĩa là vứt luôn k2\(\pi\) ạ? chỉ ghi nghiệm là số đằng trước thôi ạ?

3 tháng 10 2017

\(\sqrt{-m}.\sqrt{-m}=\sqrt{\left(-m\right).\left(-m\right)}=\sqrt{m^2}=m\)

20 tháng 10 2017

hầy mất gốc chỉ ở trên gọn mối ăn hất cả rễ

t

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:
HPT \(\Rightarrow 11(2x^2+3xy+y^2)=12(x^2-xy+3y^2)\)

\(\Leftrightarrow 22x^2+33xy+11y^2=12x^2-12xy+36y^2\)

\(\Leftrightarrow 10x^2+45xy-25y^2=0\)

\(\Leftrightarrow 2x^2+9xy-5y^2=0(*)\)

Dễ thấy $y=0$ không phải một nghiệm của HPT. Đặt $x=ty$

\((*)\Leftrightarrow 2(ty)^2+9ty.y-5y^2=0\)

\(\Leftrightarrow y^2(2t^2+9t-5)=0\)

Vì $y\neq 0$ nên $2t^2+9t-5=0$

\(\Leftrightarrow (2t-1)(t+5)=0\Rightarrow \left[\begin{matrix} t=\frac{1}{2}\\ t=-5\end{matrix}\right.\)

Nếu \(t=\frac{1}{2}\Leftrightarrow 2x=y\)

Thay vào PT đầu tiên:

\(2x^2+3x.2x+4x^2=12\)

\(\Leftrightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 2\) (tương ứng)

Nếu \(t=-5\Leftrightarrow x=-5y\)

Thay vào PT đầu tiên:

\(2(-5y)^2+3(-5y)y+y^2=12\)

\(\Leftrightarrow 36y^2=12\Leftrightarrow y^2=\frac{1}{3}\)

\(\Rightarrow y=\pm \sqrt{\frac{1}{3}}\Rightarrow x=\mp 5\sqrt{\frac{1}{3}}\) (tương ứng)

Vậy..........

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:
HPT \(\Rightarrow 11(2x^2+3xy+y^2)=12(x^2-xy+3y^2)\)

\(\Leftrightarrow 22x^2+33xy+11y^2=12x^2-12xy+36y^2\)

\(\Leftrightarrow 10x^2+45xy-25y^2=0\)

\(\Leftrightarrow 2x^2+9xy-5y^2=0(*)\)

Dễ thấy $y=0$ không phải một nghiệm của HPT. Đặt $x=ty$

\((*)\Leftrightarrow 2(ty)^2+9ty.y-5y^2=0\)

\(\Leftrightarrow y^2(2t^2+9t-5)=0\)

Vì $y\neq 0$ nên $2t^2+9t-5=0$

\(\Leftrightarrow (2t-1)(t+5)=0\Rightarrow \left[\begin{matrix} t=\frac{1}{2}\\ t=-5\end{matrix}\right.\)

Nếu \(t=\frac{1}{2}\Leftrightarrow 2x=y\)

Thay vào PT đầu tiên:

\(2x^2+3x.2x+4x^2=12\)

\(\Leftrightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 2\) (tương ứng)

Nếu \(t=-5\Leftrightarrow x=-5y\)

Thay vào PT đầu tiên:

\(2(-5y)^2+3(-5y)y+y^2=12\)

\(\Leftrightarrow 36y^2=12\Leftrightarrow y^2=\frac{1}{3}\)

\(\Rightarrow y=\pm \sqrt{\frac{1}{3}}\Rightarrow x=\mp 5\sqrt{\frac{1}{3}}\) (tương ứng)

Vậy..........