Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
a, không nhìn rõ
b, \(\dfrac{a+2\sqrt{a}+1}{a-1}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)
\(\dfrac{\sqrt{12}-\sqrt{18}}{\sqrt{6}-3}-\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{2.6}-\sqrt{2.9}}{\sqrt{6}-3}=\dfrac{\sqrt{2}\left(\sqrt{6}-3\right)}{\sqrt{6}-3}=\sqrt{2}\)
\(\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\dfrac{2\sqrt{2.3}-\sqrt{2.8}}{\sqrt{3}-\sqrt{2}}=\dfrac{2\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=2\sqrt{2}\)
Vậy \(\dfrac{\sqrt{12}-\sqrt{18}}{\sqrt{6}-2}-\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\sqrt{2}-2\sqrt{2}=-\sqrt{2}\)
\(\sqrt{11+4\sqrt{7}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}=\sqrt{\left(2+\sqrt{7}\right)^2}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2+\sqrt{7}+\sqrt{2}\)
Vậy \(\sqrt{11+4\sqrt{7}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\dfrac{3}{\sqrt{7}-2}=2+\sqrt{7}+\sqrt{2}-\dfrac{3}{\sqrt{7}-2}=\dfrac{\sqrt{2}\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=\sqrt{2}\)
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông
A B O O' C D H Q' I G K P T E F J M N U V
a) Hai đường tròn (O) và (O') cắt nhau tại A và B => OO' vuông góc AB
Xét đường tròn (O'): O'O vuông góc với dây AB, O nằm trên (O') => O là điểm chính giữa (AB
=> Sđ(OA = Sđ(OB => CO là phân giác ^BCD.
Xét tứ giác CHOD: CO là phân giác ^DCH (cmt), OD = OH, CH khác CD => CHOD nội tiếp.
b) Ta thấy:
AB là trục đẳng phương của (O) và (O')
CO là trục đẳng phương của (O') và (CHOD)
DH là trục đẳng phương của (CHOD) và (O)
Suy ra AB,CO,DH đồng quy tại I.
c) Lấy P và Q' trên (O) sao cho CP, CQ' tiếp xúc với (O), PQ' cắt CD và CB tại U,V; CO cắt (O) tại G,K
Ta có \(\left(CUAD\right)=-1=\left(CVBH\right)\)=> AB,DH,PQ' đồng quy => PQ' cắt CO tại I
Suy ra \(\left(CIKG\right)=-1\), vì O là trung điểm KG nên \(\overline{CI}.\overline{CO}=\overline{CK}.\overline{CG}\)(Maclaurin)
Mà \(CQ^2=CI.CO\)nên \(CQ^2=\overline{CK}.\overline{CG}=P_{C/\left(O\right)}\). Vậy CQ tiếp xúc với (O).
d) Gọi AF giao TD tại J.
Ta thấy: ^JNE = ^AEO (Cùng phụ ^DEN), ^NEJ = ^EOA vì J là trực tâm \(\Delta\)EAT và ^NEJ, ^EOA cùng phụ ^OEJ
=> \(\Delta\)ENJ ~ \(\Delta\)OEA. Tương tự \(\Delta\)EMJ ~ \(\Delta\)OET
=> \(\frac{EN}{OE}=\frac{EJ}{OA}=\frac{EJ}{OT}=\frac{EM}{OE}\). Vậy EM = EN.