K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

\(C=\left(\frac{1}{x+\sqrt{x}}-\frac{1}{\sqrt{x}+1}\right):\frac{\sqrt{x}-1}{x+2\sqrt{x}+1}\)

\(=\frac{1-x}{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(=-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=-\frac{\sqrt{x}+1}{\sqrt{x}}\)

23 tháng 5 2020

ĐK: 2x -1 ≥ 0 ⇔ x ≥ \(\frac{1}{2}\)

\(\left(x-1\right)\sqrt{2x-1}=3\left(x^2-5x+4\right)\)

⇔ (x -1)\(\sqrt{2x-1}\) = 3(x - 4)(x - 1)

- Xét x = 1 ta thấy là nghiệm của phương trình (1)

- Xét x≠ 1: \(\sqrt{2x-1}=3\left(x-4\right)\) (x ≥ 4)

⇔ 2x -1 = 9x2 -72x + 144

\(\left[{}\begin{matrix}x=5\left(TM\right)\left(2\right)\\x=\frac{29}{9}\left(KTM\right)\end{matrix}\right.\)

Từ (1), (2) suy ra nghiệm của phương trình là \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

23 tháng 5 2020

bạn thử vào xem, đâu có đúng đâu???

2 tháng 5 2021

Uh mình chỉ giúp được câu a

\(x^2-5x+3=0\)

\(\Delta=b^2-4ac\)

\(=\left(-5\right)^2-4.1.3\)

\(=25-12=13>0\)

\(x1=\dfrac{b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{13}}{2}\)

\(x2=\dfrac{b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{13}}{2}\)

13 tháng 5 2019

Giúp mình với ạ

14 tháng 5 2019

\(2^a3^b=\frac{4}{3}\Leftrightarrow2^a.3^{b+1}=4\Leftrightarrow\frac{2^a3^{b+1}}{2^2}=1\Leftrightarrow2^{a-2}3^{b+1}=1.\) 

vì 2 và ba nguyên tố cùng nhau nên  :    \(2^{a-2}.3^{b+1}=1\Leftrightarrow\hept{\begin{cases}a-2=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=-1\end{cases}.}}\)

HOẶC

\(\left(2^{a-2}.3^{b+1}=1\Leftrightarrow2^{a-2}.3^{b+1}=2^0.3^0\Rightarrow\hept{\begin{cases}a-2=0\\b+1=0\end{cases}\Rightarrow}\hept{\begin{cases}a=2\\b=-1\end{cases}}.\right)\)

14 tháng 5 2019

Cảm ơn bạn

22 tháng 2 2016

Ta có: \(xyz\le\left(\frac{x+y+z}{3}\right)^3=\frac{1}{27}\)  và  \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\left(\frac{x+y+y+z+z+x}{3}\right)^3=\frac{8}{27}\)

\(\Rightarrow B\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\Rightarrow k=\frac{8}{729}\Rightarrow9^3.k=8\) 

7 tháng 1 2018

Mình ko giải đc ko

7 tháng 1 2018

MỤC ĐÍCH CỦA MÀY LÀ QUẢNG CÁO NHẠC THÌ YÊU CẦU CÚT OK?

CÒN NẾU MÀY MÀY MUỐN HỎI THẬT SỰ THÌ XIN MÀY CHỈ GÕ ĐỀ TOÁN VÀ ĐỪNG CHO THÊM MẤY THỨ TẠP CHẤT KIA VÀO.

CHỨ KHÔNG PHẢI LÀ HỎI MỘT CÁCH CHỐNG CHẾ KIA NHÉ 

8 tháng 5 2017

\(\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y^2}{3}}=\sqrt{\frac{x^2}{2}+\frac{4y^2}{2}}+\sqrt{\frac{\left(x+y\right)^2}{3}+\frac{y^2}{1}}\)

\(\ge\sqrt{\frac{\left(x+2y\right)^2}{2+2}}+\sqrt{\frac{\left(x+y+y\right)^2}{3+1}}=\frac{x+2y}{2}+\frac{x+2y}{2}=x+2y\)

23 tháng 12 2021

Áp dụng BĐT cauchy, ta có:

\(\sqrt{\left(2y+2z-x\right)\cdot3x}\le\dfrac{2z+2y-x+3x}{2}=\dfrac{2\left(x+y+z\right)}{2}=x+y+z\\ \Leftrightarrow\sqrt{2y+2z-x}\le\dfrac{x+y+z}{\sqrt{3x}}\\ \Leftrightarrow\sqrt{\dfrac{x}{2y+2z-x}}\ge\dfrac{\sqrt{x}}{\dfrac{x+y+z}{\sqrt{3x}}}=\dfrac{x\sqrt{3}}{x+y+z}\)

\(\Leftrightarrow S=\sum\sqrt{\dfrac{x}{2y+2z-x}}\ge\sqrt{3}\left(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}\right)\\ \Leftrightarrow S\ge\sqrt{3}\cdot\dfrac{x+y+z}{x+y+z}=\sqrt{3}\)

Dấu \("="\Leftrightarrow x=y=z\) hay tam giác đều

4:

a: góc CEH+góc CDH=180 độ

=>CDHE nội tiếp

b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có

góc EHA=góc DHB

=>ΔHEA đồng dạng với ΔHDB

=>HE/HD=HA/HB

=>HE*HB=HD*HA