Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{27}{3^{n+1}}=3^2\Leftrightarrow\frac{27}{3^{n+1}}=9\)
\(\Leftrightarrow3^{n+1}=27\div9\)
\(\Leftrightarrow3^{n+1}=3\)
\(\Leftrightarrow3^{n+1}=3^1\)
\(\Leftrightarrow n+1=1\)
\(\Rightarrow n=1-1\)
\(\Rightarrow n=0\)
=> Tích
b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
=\(3^{n+1}.2.5+2^{n+2}.3\)=\(2.3\left(3^n+2^{n+1}\right)⋮6\)
=> dpcm
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{n-1}}\)
\(\Rightarrow2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^n}\right)=2-\frac{1}{2^n}\)
\(\Rightarrow S=2-\frac{1}{2^n}>1,999=\frac{1999}{1000}\Rightarrow\frac{1}{2^n}>2-\frac{1999}{1000}=\frac{1}{1000}\Rightarrow\frac{1}{2^n}>\frac{1}{1000}\)
=>2n>1000
mà n là số nguyên dương nhỏ nhất=>n=10 (210=1024>1000)
vậy n=10
\(a,5x^3-3x^2+x-x^3-4x^2-x\)
\(=4x^3-7x^2\)
\(b,y^2+2y-2y^2-3y+3\)
\(=-y^2-y+3\)
\(c,\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1\)
\(=\frac{1}{6}x^3-2x^2-5x+1\)
\(d,\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2\)
\(=xy^2+\frac{1}{6}y^2\)
\(e,2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy\cdot y\)
\(=3xy-\frac{3}{2}z^2y+2zy^2\)
\(g,3^n+3^{n+2}\)
\(=3^n+3^n.3^2\)
\(=3^n\cdot10\)
\(h,1,5\cdot2^n-2^{n-1}\)
\(=1,5\cdot2^n-2^n\cdot\frac{1}{2}\)
\(=2^n\cdot1\)
\(=2^n\)
\(i,2^n-2^n-2\)
\(=-2\)
\(k,\frac{2}{3}\cdot3^n-3^{n-1}\)
\(=\frac{2}{3}\cdot3^n-3^n\cdot\frac{1}{3}\)
\(=3^n\cdot\frac{1}{3}\)
\(=\frac{3^n}{3}\)
sẵn bán nick luôn :)
Cái này hơi lâu thật,nhưng kiên trì 1 chút là đc ngay thôi bn !
a, \(5x^3-3x+x-x^3-4x^2-x=4x^3-3x-4x^2\)
b, \(y^2+2y-2y^2-3y+3=-y^2-y+3\)
c, \(\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1=-2x^2-5x+1\)
d, \(\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2=\frac{3}{4}xy^2-\frac{1}{2}y^2+\frac{1}{4}xy^2+\frac{2}{3}y^2=xy^2+\frac{1}{6}y^2\)
e, \(2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy.y=2xy-2yz^2+xy+\frac{1}{2}z^2y+2zy^2=3xy-\frac{3}{2}z^2y+2zy^2\)
g, \(3^n+3^{n+2}\)( chắc tối giản rồi,ko phân tích đc nữa. )
h, \(1,5.2^n-2^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )
i, \(2^n-2^n-2=-2\)
k, \(\frac{2}{3}.3^n-3^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )
Có j sai,mong mọi người góp ý,thông cảm ạ.
1+1=2
tk cho mk nha
:^_^