\(2.2^2+3.2^3+4.2^4+....+n.2^n=2^{n+10}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

a)\(\frac{27}{3^{n+1}}=3^2\Leftrightarrow\frac{27}{3^{n+1}}=9\)

                       \(\Leftrightarrow3^{n+1}=27\div9\)

                       \(\Leftrightarrow3^{n+1}=3\)

                       \(\Leftrightarrow3^{n+1}=3^1\)

                       \(\Leftrightarrow n+1=1\)

                       \(\Rightarrow n=1-1\)

                       \(\Rightarrow n=0\)

=> Tích

23 tháng 7 2018

bn thiếu câu b) rồi

=> ko tích

13 tháng 12 2015

Em mới học lớp 5 thôi ạ!

1 tháng 8 2020

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

=\(3^{n+1}.2.5+2^{n+2}.3\)=\(2.3\left(3^n+2^{n+1}\right)⋮6\)

=> dpcm

1 tháng 8 2020

a) A = 2 + 22 + 23 + ... + 2100

=> 2A = 22 + 23 + 24 + ... + 2101

Lấy 2A trừ A theo vế ta có 

2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)

  => A = 2201 - 2

Sửa đề 2(A + 2) = 22x

=> 2(2201 - 2 + 2) = 22x

=> 2202 = 22x

=> (22)101 = (22)x

=> x = 101 

3 tháng 2 2016

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)

\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{n-1}}\)

\(\Rightarrow2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^n}\right)=2-\frac{1}{2^n}\)

\(\Rightarrow S=2-\frac{1}{2^n}>1,999=\frac{1999}{1000}\Rightarrow\frac{1}{2^n}>2-\frac{1999}{1000}=\frac{1}{1000}\Rightarrow\frac{1}{2^n}>\frac{1}{1000}\)

=>2n>1000

mà n là số nguyên dương nhỏ nhất=>n=10 (210=1024>1000)

vậy n=10

5 tháng 5 2020

\(a,5x^3-3x^2+x-x^3-4x^2-x\)

\(=4x^3-7x^2\)

\(b,y^2+2y-2y^2-3y+3\)

\(=-y^2-y+3\)

\(c,\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1\)

\(=\frac{1}{6}x^3-2x^2-5x+1\)

\(d,\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2\)

\(=xy^2+\frac{1}{6}y^2\)

\(e,2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy\cdot y\)

\(=3xy-\frac{3}{2}z^2y+2zy^2\)

\(g,3^n+3^{n+2}\)

\(=3^n+3^n.3^2\)

\(=3^n\cdot10\)

\(h,1,5\cdot2^n-2^{n-1}\)

\(=1,5\cdot2^n-2^n\cdot\frac{1}{2}\)

\(=2^n\cdot1\)

\(=2^n\)

\(i,2^n-2^n-2\)

\(=-2\)

\(k,\frac{2}{3}\cdot3^n-3^{n-1}\)

\(=\frac{2}{3}\cdot3^n-3^n\cdot\frac{1}{3}\)

\(=3^n\cdot\frac{1}{3}\)

\(=\frac{3^n}{3}\)

sẵn bán nick luôn :)

Cái này hơi lâu thật,nhưng kiên trì 1 chút là đc ngay thôi bn !

a, \(5x^3-3x+x-x^3-4x^2-x=4x^3-3x-4x^2\)

b, \(y^2+2y-2y^2-3y+3=-y^2-y+3\)

c, \(\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1=-2x^2-5x+1\)

d, \(\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2=\frac{3}{4}xy^2-\frac{1}{2}y^2+\frac{1}{4}xy^2+\frac{2}{3}y^2=xy^2+\frac{1}{6}y^2\)

e, \(2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy.y=2xy-2yz^2+xy+\frac{1}{2}z^2y+2zy^2=3xy-\frac{3}{2}z^2y+2zy^2\)

g, \(3^n+3^{n+2}\)( chắc tối giản rồi,ko phân tích đc nữa. )

h, \(1,5.2^n-2^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )

i, \(2^n-2^n-2=-2\)

k, \(\frac{2}{3}.3^n-3^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )

Có j sai,mong mọi người góp ý,thông cảm ạ.