\(f\left(a;b;c\right)\ge f\left(t;t;c\right)\) trong...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

\(\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\left(2abc+\Sigma a^2\left(b+c\right)\right)=\Sigma\frac{a\left(b+c\right)^2+\left(a^2+bc\right)\left(b+c\right)}{\left(b+c\right)^2}=\Sigma a+\Sigma\frac{a^2+bc}{b+c}\)

Mặt khác ta có :

\(\left(\Sigma\frac{a^2+bc}{b+c}\right)\left(\Sigma a\right)=\Sigma\frac{a^3+abc}{b+c}+\Sigma\left(a^2+bc\right)\)   ( nhân vào xong tách )

\(=\Sigma\frac{a^3+abc}{b+c}-\Sigma a^2+\Sigma\left(2a^2+bc\right)=\Sigma\frac{a\left(a-b\right)\left(a-c\right)}{b+c}+\Sigma\left(2a^2+bc\right)\)  ( * )

Theo BĐT Vornicu Schur chứng minh được  ( * ) không âm.

do đó : \(\Sigma\frac{a^2+bc}{b+c}\ge\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\)

Theo đề bài , cần chứng minh : \(\left(\Sigma ab\right)\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)

Kết hợp với dòng đầu tiên t cần c/m :

\(\left(\Sigma ab\right)\left(\Sigma a+\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\right)\ge\frac{9}{4}\left(2abc+\Sigma a^2\left(b+c\right)\right)\)

Quy đồng lên, ta được :

\(\Sigma a^3\left(b+c\right)\ge2\Sigma\left(ab\right)^2\Leftrightarrow\Sigma ab\left(a-b\right)^2\ge0\)

\(\Rightarrow\)đpcm

16 tháng 8 2019

Sử dụng dồn biến chứ k phải vậy

18 tháng 4 2019

Trên đây nó ko cho đăng ảnh,mn chịu khó nhập link này vào nha:https://i.imgur.com/xQNntGH.png

13 tháng 10 2020

Vì a, b, c > 0 

=> a/b > 0 ; b/c > 0 ; c/a > 0

Áp dụng bđt Cauchy cho :

  • Bộ số a/b, 1 ta được : 

\(\frac{a}{b}+1\ge2\sqrt{\frac{a}{b}\cdot1}=2\sqrt{\frac{a}{b}}\)(1)

  • Bộ số b/c, 1

\(\frac{b}{c}+1\ge2\sqrt{\frac{b}{c}\cdot1}=2\sqrt{\frac{b}{c}}\)(2)

  • Bộ số c/a, 1

\(\frac{c}{a}+1\ge2\sqrt{\frac{c}{a}\cdot1}=2\sqrt{\frac{c}{a}}\)(3)

Nhân (1), (2) và (3) theo vế

=> \(\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)\left(\frac{c}{a}+1\right)\ge2\sqrt{\frac{a}{b}}\cdot2\sqrt{\frac{b}{c}}\cdot2\sqrt{\frac{c}{a}}=8\sqrt{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=8\sqrt{\frac{abc}{abc}}=1\)

=> đpcm

Dấu "=" xảy ra <=> a = b = c

13 tháng 10 2020

à nhầm tí :v \(8\sqrt{\frac{abc}{abc}}=8\cdot1=8\)nhé ._.

28 tháng 9 2016

Thầy search đc ở trên mạng cái này em nhé :)

Toán lớp 8

29 tháng 9 2016

Arg ơn thầy :| Em bí mỗi đoạn x + y + z = 0 ....

12 tháng 6 2019

BĐT

<=> \(\frac{3\left(a^2+b^2+c^2\right)+ab+bc+ac}{3\left(ac+bc+ac\right)}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)

<=>\(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{a\left(a\left(b+c\right)+bc\right)}{b+c}+...\right)\)

<=> \(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(a^2+b^2+c^2+\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

Mà \(\frac{abc}{b+c}\le abc.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(ab+bc\right)\)

Khi đó BĐT 

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{1}{2}\left(ab+bc+ac\right)\right)\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)(luôn đúng )

=> ĐPCM

Dấu bằng xảy ra khi a=b=c

Cách này chủ yếu biến đổi tương đương nên chắc phù hợp với lớp 8

12 tháng 6 2019

Nếu sử dụng SOS nhìn vào sẽ làm đc liền vì có Nesbitt lẫn \(\frac{a^2+b^2+c^2}{ab+bc+ac}\)

27 tháng 1 2020

Sử dụng trường hợp riêng của BĐT Schur. Với a,b,c là các sooa thực ko âm và k>0 ta luôn có :

\(a^k\left(a-b\right)\left(a-c\right)+b^k\left(b-c\right)\left(b-a\right)+c^k\left(c-a\right)\left(c-b\right)\ge0\)

27 tháng 1 2020

Anh tth_new ơi,mẹ em bắt em dirichlet ạ :( Mẹ em còn chỉ em bài toán tổng quát là:

Cho a,b,c dương,CMR:\(m\left(a^2+b^2+c^2\right)+abc+3m+2\ge\left(2m+1\right)\left(a+b+c\right)\)

\(BĐT\Leftrightarrow2\left(a^2+b^2+c^2\right)+abc+8\ge5\left(a+b+c\right)\)

 Thôi,đi vào giải quyết bài toán.

Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc\ge ac+bc-c\)

Khi đó BĐT tương đương với:

\(2\left(a^2+b^2+c^2\right)+abc+8\ge2\left(a^2+b^2+c^2\right)+ac+bc-c+8\)

Ta cần chứng minh:

\(2\left(a^2+b^2+c^2\right)+ac+bc-c+8\ge5\left(a+b+c\right)\)

\(\Leftrightarrow\left(b+c-2\right)^2+\left(c+a-2\right)^2+3\left(a-1\right)^2+3\left(b-1\right)^2+2\left(c-1\right)^2\ge0\) 

Hình như cái BĐT cuối đúng thì phải ạ.

Dấu "=" xảy ra tại a=b=c=1