Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) 40 + 15 + (-10) + (-15) 2) -13 + (-750) + (-17) + 750 3) (35 - 17) + (17 + 120 - 35)
= 40 + 15 - 10 - 15 = -13 - 750 - 17 + 750 = 35 - 17 + 17 + 120 - 35
= (40 - 10) + (15 - 15) = (-13 - 17) + (-750 + 750) = (35 - 35) + (-17 + 17) + 120
= 30 = -30 = 120
4) (55 + 45 + 15) - (15 - 55 + 45) 5) -(12 + 21 - 23) - (23 - 21 + 10) 6) (2020 - 79 + 15) - (-79 + 15)
= 55 + 45 + 15 - 15 + 55 - 45 = -12 -21 + 23 - 23 + 21 - 10 = 2020 - 79 + 15 + 79 - 15
= (45 - 45) + (15 - 15) + (55 + 55) = (-12 - 10) + (-21 + 21) + (23 - 23) = 2020 + (-79 + 79) + (15 - 15)
= 110 = -22 = 2020
7) -(515 - 80 + 91) - (2010 + 80 - 91) 8) 25 - (-17) + 24 - 12 9) 235 - (34 + 135) - 100
= -515 + 80 - 91 - 2010 - 80 + 91 = 25 + 17 + 24 - 12 = 235 - 34 - 135 - 100
= (-515 -2010) + (80 - 80) + (-91 + 91) = 54 = -34
= -2525
10) (13 + 49) - (13 - 135 + 49)
= 13 + 49 - 13 + 135 - 49
= (13 - 13) + (49 - 49) +135
= 135

5.\(-\dfrac{3}{7}+\dfrac{5}{13}+\dfrac{-4}{12}=-\dfrac{103}{273}\)
b.\(-\dfrac{5}{21}+\dfrac{-2}{21}+\dfrac{8}{24}=\dfrac{-5-2}{21}+\dfrac{8}{24}=-\dfrac{7}{21}+\dfrac{8}{24}=-\dfrac{1}{3}+\dfrac{8}{24}=0\)
c.\(\dfrac{5}{13}+\dfrac{-5}{7}+\dfrac{-20}{41}+\dfrac{8}{13}+\dfrac{-21}{41}=\left(\dfrac{5}{13}+\dfrac{8}{13}\right)+\left(\dfrac{-20}{41}+\dfrac{-21}{41}\right)+-\dfrac{5}{7}=1-1-\dfrac{5}{7}=-\dfrac{5}{7}\)

* ĐK: \(x\ne0\)
Đề ra ...<=> \(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{9}\)
<=> \(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{1}{9}\)
<=> \(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
<=>\(\frac{1}{6}-\frac{1}{x+1}+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
<=>\(\frac{1}{x+1}\left(1-\frac{1}{x}\right)=\frac{1}{6}-\frac{1}{9}\)
<=> \(\frac{x-1}{x\left(x+1\right)}=\frac{1}{36}\)
<=> \(\frac{x-1}{x\left(x-1\right)}=\frac{x-1}{36.\left(x-1\right)}\)
=> x(x-1) = 36. (x-1) => x =36
\(\frac{2}{2}.\left(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x+\left(x+1\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2}{9}\)
\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x.\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
x+1=18
x=18-1
x=17
-1
-1