Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm 1 bài thôi nhé
Bài 5
\(a.1-2y+y^2=\left(1-y\right)^2\)
\(b.\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x-4\right)\left(x+6\right)\)
\(c.1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
\(d.27+27x+9x^2+x^3=3^3+3.3^3.x+3.3.x^2+x^3=\left(3+x\right)^3\)
\(f.8x^3-12x^2y+6xy-y^3=\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y-y^3=\left(2x-y\right)^3\)
Bài 4 :
a, \(x^3+3x^2-x-3=x^2\left(x+3\right)-\left(x+3\right)=\left(x+1\right)\left(x-1\right)\left(x+3\right)\)
b, bạn xem lại đề nhé
c, \(x^2-4x+4-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
d, \(5x+5-x^2+1=5\left(x+1\right)+\left(1-x\right)\left(x+1\right)=\left(x+1\right)\left(6-x\right)\)
=x^4+1+2x^2+3x^3+3x+2x^2
=x^4+3x^3+4x^2+3x+2x^2
=x^3+x^3+2x^3+2x^2+2x^2+2x+x+1
=x^4+3x^3+4x^2+3x+1
Bài 4 :
\(M=\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)
\(=\left(2x-3y-1+2x\right)\left(2x-3y+1-2x\right)-9y^2+4+12xy-4x\)
\(=\left(4x-3y-1\right)\left(1-3y\right)-9y^2+4+12xy-4x\)
\(=4x-12xy-3y+9y^2-1+3y-9y^2+4+12xy-4x=3\)
Vậy biểu thức ko phụ thuộc giá trị biến x
Bài 2 :
a, \(\left(a-3b\right)^2=a^2-6ab+9b^2\)
b, \(x^2-16y^4=\left(x-4y^2\right)\left(x+4y^2\right)\)
c, \(25a^2-\frac{1}{4}b^2=\left(5a-\frac{1}{2}b\right)\left(5a+\frac{1}{2}b\right)\)
Bài 3 :
a, \(9x^2-6x+1=\left(3x-1\right)^2\)
b, \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
c, \(4\left(2x-y\right)^2-8x+4y+1=\left(4x-2y\right)^2-2\left(4x-2y\right)+1=\left(4x-2y-1\right)^2\)
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
e thì k giúp j đc nhưng gửi lời khen đến anh ( chị ) chữ đẹp quá
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
Bài 1:
a, 4x2+6x=2x(2x+3)
b, 12x(x-2y)-9y(x-2y)=3(x-2y)(4x-3y)
c, 3x3-6x2+3x=3x(x2-2x+1)=3x(x-1)2
d, 2x3-2xy2+12x2+18x=2x(x2-y2)+2x(6x+9)=2x(x2+6x+9-y2)
=2x[(x+3)2-y2 ]=2x(x+y+3)(x-y+3)
Bài 2:
a, 5x(x-1)+10x-10=0 <=> 5x(x-1)+10(x-1)=0 <=> 5(x-1)(x+2)=0
\(\Leftrightarrow\orbr{\begin{cases}5\left(x-1\right)=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
b,(x+2)(x+3)-2x=6 <=> (x+2)(x+3)-2(x+3)=0 <=> (x+3)(x+2-2)=0 <=> x(x+3)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
c, \(\left(x-1\right)\left(x-2\right)-2=0\Leftrightarrow x^2-3x+2-2=0\Leftrightarrow x\left(x-3\right)\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Bài 3
a, \(x^4y+3x^3y^2+3x^2y^3+xy^4=xy\left(x^3+3x^2y+3xy^2+y^3\right)=xy\left(x+y\right)^3\)
b, \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
hình học
Bài 1 \(\widehat{D}=360^o-\widehat{A}-\widehat{B}-\widehat{C}=360^o-50^o-120^o-90^o=100^o\)
Bài 2 \(Tc:\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}=360^o-50^o-110^o=200^o\)
\(\Rightarrow\widehat{C}=200^o-\widehat{D}\)mà \(\widehat{C}=3\widehat{D}\)nên ta có \(3\widehat{D}=200^o-\widehat{D}\Leftrightarrow4\widehat{D}=200^o\Leftrightarrow\widehat{D}=50^o\Rightarrow\widehat{C}=3.50^o=150^o\)
Bài 4 \(\widehat{C}+\widehat{D}=360^o-90^o-110^o=160^o\)
Áp dụng dãy tỉ số bằng nhau
\(\frac{\widehat{C}}{3}=\frac{\widehat{D}}{5}=\frac{\widehat{C}+\widehat{D}}{3+5}=\frac{160^0}{8}=30^o\)
\(\Rightarrow\frac{\widehat{C}}{3}=30^o\Rightarrow\widehat{C}=30^o.3=90^o\Rightarrow\widehat{D}=160^o-90^o=70^o\)