Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng làm:
Thấy cả tử mẫu cộng lại đều bằng 2021 → Cộng thêm 1 rồi quy đồng với mỗi phân thức
\(\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\\ \Leftrightarrow\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\\ \Leftrightarrow\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}\right)=0\\ \Leftrightarrow x+2021=0\Leftrightarrow x=-2021\)
\(< =>\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\)
\(< =>\dfrac{x+2+2019}{2019}+\dfrac{x+3+2018}{2018}=\dfrac{x+4+2017}{2017}+\dfrac{x+2021}{2021}\)
\(< =>\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\)
\(< =>\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}=\right)=0\)
\(< =>x+2021=0< =>x=-2021\)
Vậy....
\(\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x}{2021}\)
\(\Leftrightarrow\frac{x+2}{2019}+1+\frac{x+3}{2018}+1=\frac{x+4}{2017}+1+\frac{x}{2021}+1\)
\(\Leftrightarrow\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2021}\)
\(\Leftrightarrow x+2021=0\)
\(\Leftrightarrow x=-2021\)
\(\frac{1}{9+x}-\frac{1}{x}=\frac{1}{5}+\frac{1}{4}\)
\(\frac{1}{9+x}-\frac{1}{x}=\frac{9}{20}\)
\(\frac{1}{x}+\frac{1}{9}-\frac{1}{x}=\frac{9}{20}\)
\(0=\frac{9}{20}-\frac{1}{9}\)
Pt vô nghiệm :)
a: ĐKXĐ: \(x\notin\left\{1;-1;0\right\}\)
b: \(A=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{5\left(x-1\right)}{2x}=\dfrac{20\left(x-1\right)}{2x}=\dfrac{10\left(x-1\right)}{x}\)
c: Khi x=3,5 thì \(A=\dfrac{10\cdot2.5}{3.5}=\dfrac{25}{3.5}=\dfrac{50}{7}\)
d: Để A=4 thì 10x-10=4x
=>6x=10
=>x=5/3
ĐK: \(x\ne1;x\ne-1\)
\(Q=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2}-\dfrac{1}{\left(x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\right)\left(x-1\right)\left(x+1\right)\)
\(Q=\left(\dfrac{x-1}{x+1}-\dfrac{1}{x+1}+\dfrac{x+1}{x-1}\right)\left(x-1\right)\left(x+1\right)\)
\(Q=\left(x-1\right)^2-\left(x-1\right)+\left(x+1\right)^2\)
\(Q=x^2-2x+1-x+1+x^2+2x+1=2x^2-x+3\)
c/ \(Q=2\left(x^2-\dfrac{1}{2}x\right)+3=2\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)-\dfrac{1}{8}+3\)
\(Q=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{23}{8}\ge\dfrac{23}{8}\)
\(\Rightarrow Q_{min}=\dfrac{23}{8}\) khi \(x=\dfrac{1}{4}\)
đổi x= 38/5 ; y = 12/5
B= x(x+y) -7(x+y) = (x+y)(x-7)
B= (38/5 + 12/5)( 38/5-7)= 10.3/5 = 6
mới mở máy thấy làm liền đó
a) \(\frac{6-x}{3}-\frac{x}{4}=\frac{3+2x}{2}-1\)
\(\frac{4\left(6-x\right)}{12}-\frac{3x}{12}=\frac{3+2x}{2}-\frac{2}{2}\)
\(\frac{24-4x-3x}{12}=\frac{3+2x-2}{2}\)
\(\frac{24-7x}{12}=\frac{2x+1}{2}\)
\(\Rightarrow2\left(24-7x\right)=12\left(2x+1\right)\)
\(\Rightarrow48-14x=24x+12\)
\(\Rightarrow24x+14x=48-12\)
\(\Rightarrow38x=36\)
\(\Rightarrow x=\frac{18}{19}\)
b) \(-7x-\frac{x-3}{5}-\frac{x}{2}=x+\frac{2x+1}{3}\)
\(\frac{-70x}{10}-\frac{2\left(x-3\right)}{10}-\frac{5x}{10}=\frac{3x}{3}+\frac{2x+1}{3}\)
\(\frac{-70x-2x+6-5x}{10}=\frac{3x+2x+1}{3}\)
\(\frac{-77x+6}{10}=\frac{5x+1}{3}\)
\(\Rightarrow3\left(-77x+6\right)=10\left(5x+1\right)\)
\(\Leftrightarrow-231x+18=50x+10\)
\(\Leftrightarrow50x+231x=18-10\)
\(\Leftrightarrow281x=8\)
\(\Leftrightarrow x=\frac{8}{281}\)
Mấy câu kia tương tự
a: \(\Leftrightarrow4\left(6-x\right)-3x=6\left(2x+3\right)-12\)
=>24-4x-3x=12x+18-12
=>12x+6=-7x+24
=>19x=18
=>x=18/19
b: \(\Leftrightarrow-210x-6\left(x-3\right)-15x=30x+10\left(2x+1\right)\)
=>-225x-6x+18=30x+20x+10
=>-231x+18-50x-10=0
=>-281x=-8
=>x=8/281
c: \(\Leftrightarrow36-2\left(x+3\right)=-4x+1-x\)
=>36-2x-6=-5x+1
=>3x=1+6-36=5-36=-31
=>x=-31/3
d: \(\Leftrightarrow-30\left(x-3\right)+10\left(2x-7\right)=6\left(6-x\right)\)
=>-30x+90+20x-70=36-6x
=>-10x+20=36-6x
=>-4x=16
=>x=-4
ĐKXĐ: \(x\notin\left\{0;-9\right\}\)
Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)
Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)
\(\Leftrightarrow9x^2+81x+180=0\)
\(\Leftrightarrow x^2+9x+20=0\)
\(\Leftrightarrow x^2+4x+5x+20=0\)
\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-4;-5}