K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 7 2020

Phương trình tham số d1: \(\left\{{}\begin{matrix}x=1+2t\\y=3+3t\\z=2t\end{matrix}\right.\)

Phương trình tham số d2: \(\left\{{}\begin{matrix}x=5+6t'\\y=4t'\\z=5-5t'\end{matrix}\right.\)

Gọi (Q) là mặt phẳng song song (P) và cách (P) 1 khoảng bằng 2 \(\Rightarrow\) pt có dạng \(x-2y-2z-d=0\) (\(d\ne1\))

Gọi \(A\left(d;0;0\right)\) là 1 điểm thuộc (Q)

\(d\left(A;\left(P\right)\right)=2\Leftrightarrow\frac{\left|d+1\right|}{\sqrt{1+4+4}}=2\Leftrightarrow\left|d+1\right|=6\Rightarrow\left[{}\begin{matrix}d=5\\d=-7\end{matrix}\right.\)

Có 2 mp (Q) thỏa mãn: \(\left[{}\begin{matrix}x-2y-2z-5=0\\x-2y-2z+7=0\end{matrix}\right.\)

M là giao điểm (Q) và d1 nên tọa độ M là ...

N là giao điểm (Q) và d2 nên tọa độ N là ...

6 tháng 10 2018

Đáp án C.

NV
21 tháng 12 2020

\(\overrightarrow{NM}=\left(4;-2;2\right)=2\left(2;-1;1\right)\)

Gọi Q là trung điểm MN \(\Rightarrow Q\left(-1;3;2\right)\)

Phương trình mặt phẳng trung trực của MN (đi qua Q và nhận \(\overrightarrow{NM}\) là 1 vecto pháp tuyến) có dạng:

\(2\left(x+1\right)-1\left(y-3\right)+1\left(z-2\right)=0\)

\(\Leftrightarrow2x-y+z+3=0\)

b.

(P) có 1 vecto pháp tuyến là \(\left(1;2;-1\right)\)

Do \(\left(\beta\right)\) song song (P) nên cũng nhận \(\left(1;2;-1\right)\) là 1 vtpt

À thôi bạn ghi sai đề rồi, \(\left(\beta\right)\) chỉ có thể đi qua M hoặc N (1 điểm thôi), không thể đi qua MN được vì MN không song song với (P)

21 tháng 12 2020

Anh ơi

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Đề bài là gì vậy bạn?

2 tháng 1 2020

Đáp án B

Bài 1:

a) Ta có: \(\left(x+5\right)^2=100\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=10\\x+5=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-15\end{matrix}\right.\)

Vậy: \(x\in\left\{5;-15\right\}\)

b) Ta có: \(\left(2x-4\right)^2=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\)

hay x=2

Vậy: x=2

c) Ta có: \(\left(x-1\right)^3=27\)

\(\Leftrightarrow x-1=3\)

hay x=4

Vậy: x=4

29 tháng 4 2020

Cảm ơn anh nhiều ạ,chiều nay hok trực tuyến mà ko lm đc,may mà có anh gp em

AH
Akai Haruma
Giáo viên
1 tháng 3 2017

Bài 1)

Gọi số phức $z$ có dạng \(z=a+bi(a,b\in\mathbb{R})\).

Ta có \(|z|+z=3+4i\Leftrightarrow \sqrt{a^2+b^2}+a+bi=3+4i\)

\(\Rightarrow\left\{\begin{matrix}\sqrt{a^2+b^2}+a=3\\b=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=\frac{5}{6}\\b=4\end{matrix}\right.\)

Vậy số phức cần tìm là \(\frac{5}{6}+4i\)

b)

\(\left\{\begin{matrix} z_1+3z_1z_2=(-1+i)z_2\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{z_1}{z_2}+3z_1=-1+i\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \frac{z_1}{z_2}+z_1+z_2=(-1+i)-(3+2i)=-4-i\)

\(\Leftrightarrow w=-4-i\Rightarrow |w|=\sqrt{17}\)