Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(y-1\right)=-9\)
Ta có : -9 = 1 . ( -9 )
= -1 . 9
= 3 . ( -3 )
Ta có bảng sau
x | 1 | -1 | 9 | -9 | 3 | -3 |
y-1 | -9 | 9 | -1 | 1 | -3 | 3 |
y | -8 | 10 | 0 | 2 | -2 | 4 |
Vậy các cặp số nguyên (x;y) thỏa mãn là :
(1; -8) ; (-1;10) ; (9;0) ; (-9;2) ; (3;-2) ; (-3;4)
Do x.(y-1)=-9 nên: -9 chia hết cho x
=> x;(y-1) ước của 9
Ta có bảng gt sau:
x 1 -1 9 -9 3 -3
y-1 -9 9 -1 1 -3 3
y -8 10 0 2 -2 4
Vậy...
Ta có :
\(\frac{-16}{32}=\frac{-16:16}{32:16}=\frac{-1}{2}\)
+)\(\frac{-1}{2}=\frac{x}{-10}\)
=> (-10) x (-1) = X x 2
=> 10 = X x 2
=> X = 10 : 2
=> X = 5
+) \(\frac{-1}{2}=\frac{-7}{y}\)
=> (-1) x Y = (-7) x 2
=> -Y = -14
=> Y = 14
+)\(\frac{-1}{2}=\frac{z}{24}\)
=> (-1) x 24 = Z x 2
=> -24 = Z x 2
=> Z = -24 : 2
=> Z = -12
Kết luận : X = 5
Y = 14
Z = 12
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
a, Ta có : \(14⋮2x-3\)
\(\Rightarrow2x-3\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Vì \(2x-3\)là số lẻ
\(\Rightarrow2x-3\in\left\{\pm1;\pm7\right\}\)
... (tự làm)
\(b,\left(x-3\right)\left(y+2\right)=-7\)
\(x+3\)và \(y+2\)là số nguyên
\(\Rightarrow x+3,y+2\inƯ\left(-7\right)=\left\{\pm1;\pm7;\right\}\)
...
\(c,x\left(y-1\right)=9\)
\(x\)và \(y-1\)là số lẻ
\(\Rightarrow x,y-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
...