Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{5-2.2\sqrt{5}+4}-\sqrt{5+2.2\sqrt{5}+4}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)
\(=\sqrt{5}-2-\sqrt{5}-2=-4\)
g)\(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
\(=\dfrac{\sqrt{3}+\sqrt{9+2.3.\sqrt{2}+2}-\sqrt{3+2.\sqrt{3}.\sqrt{2}+2}}{\sqrt{2}+\sqrt{5+2.\sqrt{5}.1+1}-\sqrt{5+2.\sqrt{5}.\sqrt{2}+2}}\)
\(=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\dfrac{\sqrt{3}+3+\sqrt{2}-\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\left(\sqrt{5}+1\right)-\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\dfrac{3}{1}=3\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)\(=\sqrt{9-2\cdot2\cdot\sqrt{5}}-\sqrt{9+2\cdot2\cdot\sqrt{5}}\)\(=\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}\)\(=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|\)\(=\left(2-\sqrt{5}\right)-\left(2+\sqrt{5}\right)\)\(=2-\sqrt{5}-2-\sqrt{5}=-2\sqrt{5}\)
\(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}=\dfrac{\sqrt{3}+\sqrt{11+2\cdot3\cdot\sqrt{2}}-\sqrt{5+2\cdot\sqrt{2}\cdot\sqrt{3}}}{\sqrt{2}+\sqrt{6+2\cdot\sqrt{5}}-\sqrt{7+2\cdot\sqrt{2}\cdot\sqrt{5}}}=\dfrac{\sqrt{3}+\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}+1}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}}=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}=\dfrac{\sqrt{3}+\left|3+\sqrt{2}\right|-\left|\sqrt{2}+\sqrt{3}\right|}{\sqrt{2}+\left|\sqrt{5}+1\right|-\left|\sqrt{2}+\sqrt{5}\right|}=\dfrac{\sqrt{3}+3+\sqrt{2}-\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{5}+1-\sqrt{2}-\sqrt{5}}=3\)
Câu 2:
\(B=\left(\dfrac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\right)\cdot\dfrac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)
\(=\left(\dfrac{\sqrt{x}+\sqrt{x}+3}{\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}-1}\)
Để B<0 thì \(2\sqrt{x}-1< 0\)
=>\(2\sqrt{x}< 1\)
=>0<x<1/4
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)