\(\frac{65}{26}=\frac{5}{2}.\) T...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

Điều kiện \(0< a,b,c\le9\) và \(a\ne b,\)\(b\ne c,\)\(c\ne a.\)

Ta viết lại \(\frac{\overline{ab}}{\overline{ca}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\left(10a+b\right)c=\left(10c+a\right)b\)\(\Leftrightarrow\)\(10ac-10bc=ab-bc\)

\(\Leftrightarrow\)\(2.5c\left(a-b\right)=b\left(a-c\right)\)(1)

Do \(c\ne0\) và \(a\ne b\) nên \(b\left(a-c\right)\) chia hết cho 5. Xảy ra 3 trường hợp:

- TH1: \(b\) chia hết cho 5, mà \(0< b\le9\) \(\Rightarrow\)\(b=5.\)

(1) \(\Leftrightarrow\)\(2.5.c\left(a-5\right)=5\left(a-c\right)\)\(\Leftrightarrow\)\(2c\left(a-5\right)=a-c\)\(\Leftrightarrow\)\(2ac-a-9c=0\)(2)

\(\Leftrightarrow\)\(a=2ac-9c=c\left(2a-9\right)\)\(\Leftrightarrow\)\(c=\frac{a}{2a-9}\)

Mặt khác (2) \(\Leftrightarrow\)\(2ac=a+9c\)\(\Leftrightarrow\)\(2c=\frac{a+9c}{a}=1+\frac{9c}{a}=1+\frac{\frac{9a}{2a-9}}{a}=1+\frac{9}{2a-9}\)

Do \(2c>0\) nên \(2a-9>0,\) do đó \(2a-9\in\left\{3;9\right\}\)Ta có \(2a-9\ne1\) vì \(a\ne c.\)

Ta tìm được \(\left(a;b;c\right)=\left(6;5;2\right),\left(9;5;1\right).\)

- TH2: \(a-c\) chia hết cho 5 nên \(a-c=5\)\(\Rightarrow\)\(a=c+5\)

(1) \(\Leftrightarrow\)\(2c\left(c+5-b\right)=b\)\(\Leftrightarrow\)\(b=\frac{2c^2+10c}{2c+1}\)\(\Leftrightarrow\)\(2b=2c+9-\frac{9}{2c+1}\)

Suy ra \(2c+1\in\left\{3;9\right\}\) do \(c\ne0.\) Tìm được \(\left(a;b;c\right)=\left(6;4;1\right),\left(9;8;4\right).\)

- TH3: \(c=a+5\)

(1) \(\Leftrightarrow\)\(2\left(a+5\right)\left(a-b\right)=-b\)\(\Leftrightarrow\)\(b=\frac{2a^2+10a}{2a-9}\)\(\Leftrightarrow\)\(2b=2a+19-\frac{9.19}{2a-9}\)

Suy ra \(b>9,\) ta không xét.

Vậy có 4 bộ số thỏa đề bài: \(\left(a;b;c\right)=\left(6;5;2\right),\left(9;5;1\right),\left(6;4;1\right),\left(9;8;4\right).\)

6 tháng 10 2016

a;b;c=(9;5;1),(9;8;4),(6;4;1),(6;5;2)

1 tháng 3 2020

Ta có \(\frac{ab}{bc}=\frac{b}{c}\)

Áp dụng t/c dãy tỉ số bằng nhau ta đucợ

\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{10a}{10b}=\frac{a}{b}\)( ko hiểu sao có 10a , 10b hỏi mình )

=>\(b^2=a.c\)( ko hiểu đoạn này cx hỏi mình)

Do ab nguyên tố nên b lẻ khác 5, mà b là chữ số ⇒b ∈ 1;3;7;9
+ Với b = 1 thì \(1^2\) = a.c => a = c = 1, loại vì a;b;c khác nhau
+ Với b = 3 thì \(3^2\) = a.c = 9, ta chọn được giá trị a = 1; c = 9 để ab = 13 thỏa mãn là số nguyên tố
+ Với b = 7 thì \(7^2\)= a.c = 49, ta chỉ chọn đuơc cặp giá trị a = c = 7 vì a;c là chữ số, loại vì a;c khác nhau
+ Với b = 9 thì \(9^2\)= a.c = 81, ta cũng chì chọn được cặp giá trị a = c = 9 vì a;c là chữ số, loại vì a;c khác nhau
Vậy abc = 139

18 tháng 2 2019

\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{5}\Leftrightarrow\frac{3a+2b}{6}=\frac{a+b}{5}\\ \Rightarrow15a+10b=6a+6b\Rightarrow9a+4b=0\)

mà a,b là số tự nhiên nên \(a,b\ge0\)

nên \(9a+4b\ge0\)

dấu bằng xảy ra khi a=b=0

18 tháng 2 2019

mk làm sai nha bạn

sr bạn

19 tháng 2 2017

đáp án là:1/2+15+1/10=4/5

Ta đã biết : Trong hệ ghi số thập phân, cứ mười đơn vị ở một hàng thì làm thành một đơn vị ở hàng trên liền trước. Mỗi chữ số trong hệ thập phân nhận một trong mười giá trị : \(0,1,2,....,9\) Số \(\overline{abcd}\) trong hệ thập phân có giá trị bằng :         \(a.10^3+b.10^2+c.10+d\) Có một hệ ghi số mà cứ hai đơn vị ở một hàng thì làm thành một đơn vị ở hàng trên liền...
Đọc tiếp

Ta đã biết : Trong hệ ghi số thập phân, cứ mười đơn vị ở một hàng thì làm thành một đơn vị ở hàng trên liền trước. Mỗi chữ số trong hệ thập phân nhận một trong mười giá trị : \(0,1,2,....,9\)

Số \(\overline{abcd}\) trong hệ thập phân có giá trị bằng :

        \(a.10^3+b.10^2+c.10+d\)

Có một hệ ghi số mà cứ hai đơn vị ở một hàng thì làm thành một đơn vị ở hàng trên liền trước, đó là hệ nhị phân. Mỗi chữ số trong hệ nhị phân nhận một trong hai giá trị 0 và 1. Một số trong hệ nhị phân, chẳng hạn \(\overline{abcd}\) được kí hiệu là \(\overline{abcd_{\left(2\right)}}\)

Số  \(\overline{abcd_{\left(2\right)}}\) trong hệ thập phân có giá trị bằng :

                          \(a.2^3+b.2^2+c.2+d\)

Ví dụ : \(\overline{1101}_{\left(2\right)}=1.2^3+1.2^2+0.2+1=8+4+0+1=13\)

a) Đổi sang hệ thập phân các số sau : \(\overline{100}2_{\left(2\right)};\overline{111}_{\left(2\right)};\overline{1010}_{\left(2\right)};\overline{1011}_{\left(2\right)}\)

b) Đổi sang hệ nhị phân các số sau : \(5;6;9;12\)

1
18 tháng 5 2017

a)

\(\overline{100}_{\left(2\right)}=1.2^2+0.2+0=4+0+0=4\\ \overline{101}_{\left(2\right)}=1.2^2+0.2+1=4+0+1=5\\ \overline{1010}_{\left(2\right)}=1.2^3+0.2^2+1.2+0=8+0+2+0=10\\\overline{1011}_{\left(2\right)}=1.2^3+0.2^2+1.2+1=8+0+2+1=11 \)

30 tháng 3 2020

ai biết làm câu nào thì làm giúp mik nha

30 tháng 3 2020

a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3

b) Có 4n-9=2(2n+1)-13

Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1

Vậy để 2(2n+1)-13 chia hết cho 2n+1

=> 13 chia hết cho 2n+1

n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)

Ta có bảng

2n+1-13-113
2n-14-202
n-7-101

d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)

Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)

\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)