\(x^2-\left(2m+1\right)x+m^2+2=0\)

Xác...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

\(\Delta=b^2-4ac=4m^2+4m+1-4m-8=4m-7\)

để pt có 2 nghiệm thì \(\Delta\ge0\) hay \(4m-7\ge0\Rightarrow m\ge\frac{7}{4}\)

áp dụng viet \(\int^{x_1+x_2=2m+1}_{x_1.x_2=m^2+2}\)

thế số vô tính

29 tháng 3 2016

pt có 2 nghiệm khi \(\Delta>0\),

9 tháng 1 2016

dùng hệ thức vi ét để biến đổi a/A= -3m^2 +2m +32=-3(m^2-2/3.m-32/3)=-3(m-1/3)^2-95/3 <= -95/3

                                            b/B=(2m+8)^2-3(m^2-8) rồi làm tương tự

 

7 tháng 1 2016

giải  pt tìm  x1 ; x 2 theo m

sau đó giải BPT tìm m  thối.x1>1 và x2 < 6

7 tháng 1 2016

denta= (2m-3)^2 -4(m^2-3m)=9>0 => pt luôn có 2 nghiệm phân biệt với mọi x 
*x1=[2m-3+9]/2=m+3 
*x2=[2m-3-9]/2=m-6 
Theo bài ra ta có: hai nghiệm x1, x2 cùng dương <=> P>0 và S>0 
=> m>3 thì hai nghiệm x1, x2 luôn cùng dương.

25 tháng 1 2016

dùng vi ét đc k bạn 

25 tháng 1 2016

Tuấn đc

15 tháng 1 2016

Để pt có hai nghiệm phân biệt âm cần :

m khác 1 

\(\Delta'=\left(m-1\right)^2-\left(m-1\right)m>0\)

\(x1+x2=\frac{-2\left(m-1\right)}{m-1}<0\left(luônđúng\right)\)

\(x1\cdot x2=\frac{-m}{\left(m-1\right)}<0\)

15 tháng 1 2016

đê pt có 2 nghiệm đều âm thì

s<0 và p>0

-2(m-1)/(m-2)<0<=>hai trường hợp

th1: m<1;m<2=>m<1 và -m/(m+1)>0<=>2 trường hợp

             .m<0;m>-1<=>-1<m<0

             .m>0;m<-1<=>m<-1 hoặc m>0

th2 tương tự

16 tháng 1 2016

\(\Delta'=m^2-2m+1+m>0\)với mọi m

\(\int^{x1+x2=2\left(m-1\right)}_{x1.x2=-m}\)

\(\int^{y1+y2=\frac{\left(x1+x2\right)\left(x1x2+1\right)}{x1x2}=S}_{y1.y2=.....=P}\Leftrightarrow pt:X^2-SX+P=0\)

20 tháng 1 2016

b2 -4ac>0  ( a khác 0 )

x1 + x2 = -b/a 

x1.x2 = c/a 

x1 - 2x2 =0  

=> x2 = -b/3a ; x1 =-2b/3a

mà x1x2 =c/a 

=>  2b2 /9a2 = c/a  => 2b2 = 9ac

18 tháng 2 2019

a, Pt có nghiệm \(x=\sqrt{2}\) tức là

\(2\left(m-4\right)-2m\sqrt{2}+m-2=0\)

\(\Leftrightarrow2m-8-2m\sqrt{2}+m-2=0\)

\(\Leftrightarrow m\left(3-2\sqrt{2}\right)=10\)

\(\Leftrightarrow m=\frac{10}{3-2\sqrt{2}}\)

b, *Với m = 4 thì pt trở thành

\(\left(4-4\right)x^2-2.4.x+4-2=0\)

\(\Leftrightarrow-8x+2=0\)

\(\Leftrightarrow x=\frac{1}{4}\)

Pt này ko có nghiệm kép

*Với \(m\ne4\)thì pt đã cho là pt bậc 2

Có \(\Delta'=m^2-\left(m-4\right)\left(m-2\right)=m^2-m^2-6m+8=-6m+8\)

Pt có nghiệm kép \(\Leftrightarrow\Delta'=0\)

                     

                           \(\Leftrightarrow m=\frac{4}{3}\)

Với \(m=\frac{4}{3}\) thì \(\Delta'=0\)

Pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m}{m-4}=\frac{\frac{4}{3}}{\frac{4}{3}-4}=-\frac{1}{2}\)

c, Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)

                                             \(\Leftrightarrow-6m+8>0\)

                                             \(\Leftrightarrow m< \frac{4}{3}\)

22 tháng 6 2015

a, với m = - 60 ta có:

 x^2 - 4x - 60 = 0

=> x^2  + 6x - 10 x - 60 = 0

=> x(x + 6) - 10 ( x+6) = 0

=> ( x -10)( x + 6) = 0

=> x = 10 hoặc x = -6

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0