
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 5:
AB=1,6+25=26,6(m)
Ta có: \(\hat{xAC}=\hat{ACB}\) (hai góc so le trong, Ax//BC)
mà \(\hat{xAC}=38^0\)
nên \(\hat{ACB}=38^0\)
Xét ΔABC vuông tại B có tan ACB\(=\frac{AB}{BC}\)
=>\(BC=\frac{AB}{\tan ACB}=\frac{26.6}{\tan38}\) ≃34,0(m)
=>Chiếc xe cách chân tòa nhà khoảng 34m

Câu 7:
Xét tứ giác AHBD có \(\hat{AHB}=\hat{ADB}=\hat{DBH}=90^0\)
nênAHBD là hình chữ nhật
=>HB=AD=68(m)
Xét ΔAHD vuông tại H có \(\tan HAB=\frac{HB}{AH}\)
=>\(AH=\frac{HB}{\tan HAB}=\frac{68}{\tan28}\) ≃127,89(m)
Xét ΔAHC vuông tại H có \(\tan HAC=\frac{HC}{HA}\)
=>\(HC=HA\cdot\tan HAC=127,89\cdot\tan43\) ≃119,26(m)
BC=BH+CH=68+119,26≃187,3(m)

a: Xét (HA/2) có
ΔAEH nội tiếp
AH là đường kính
Do đó: ΔAEH vuông tại E
=>HE⊥AB tại E
Xét (HA/2) có
ΔAFH nội tiếp
AH là đường kính
Do đó: ΔAFH vuông tại F
=>HF⊥AC tại F
Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC=AH^2\)
Ta có: \(AE\cdot AB=AF\cdot AC\)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\frac{AE}{AC}=\frac{AF}{AB}\)
Do đó: ΔAEF~ΔACB
b: Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(\hat{AFE}=\hat{AHE}\)
mà \(\hat{AHE}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)
nên \(\hat{AFE}=\hat{ABC}\)
ΔOAC cân tại O
=>\(\hat{OAC}=\hat{OCA}=\hat{ACB}\)
\(\hat{AFE}+\hat{OAC}=\hat{ABC}+\hat{ACB}=90^0\)
=>AO⊥ FE
c: Xét (O) có
ΔAKH nội tiếp
AH là đường kính
Do đó: ΔAKH vuông tại K
=>HK⊥AT tại K
Xét ΔAHT vuông tại H có HK là đường cao
nên \(AK\cdot AT=AH^2\)
=>\(AK\cdot AT=AE\cdot AB\)
=>\(\frac{AK}{AE}=\frac{AB}{AT}\)
Xét ΔAKB và ΔAET có
\(\frac{AK}{AE}=\frac{AB}{AT}\)
góc KAB chung
Do đó: ΔAKB~ΔAET
=>\(\hat{AKB}=\hat{AET}\)
d: ta có: A,C,B,K cùng thuộc (O)
=>ACBK nội tiếp
=>\(\hat{ACB}+\hat{AKB}=180^0\)
mà \(\hat{AKB}+\hat{AKI}=180^0\) (hai góc kề bù)
nên \(\hat{IKA}=\hat{ICB}\)
Xét ΔIKA và ΔICB có
\(\hat{IKA}=\hat{ICB}\)
góc KIA chung
Do đó: ΔIKA~ΔICB

Gọi H là trực tâm của ΔABC
=>BH⊥AC; CH⊥AB; AH⊥BC
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD⊥BA
mà CH⊥AB
nên CH//BD
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CA⊥CD
mà BH⊥CA
nên BH//CD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà X là trung điểm của BC
nên X là trung điểm của DH
=>DX đi qua H(1)
Xét (O) có
ΔBCE nội tiếp
BE là đường kính
Do đó: ΔBCE vuông tại C
=>CB⊥CE
mà AH⊥CB
nên AH//CE
Xét (O) có
ΔEAB nội tiếp
BE là đường kính
Do đó: ΔBAE vuông tại A
=>AE⊥AB
mà CH⊥AB
nên AE//CH
Xét tứ giác AHCE có
AH//CE
AE//CH
Do đó: AHCE là hình bình hành
=>AC cắt HE tại trung điểm của mỗi đường
mà Y là trung điểm của AC
nên Y là trung điểm của EH
=>EY đi qua H(2)
Xét (O) có
ΔFAC nội tiếp
FC là đường kính
Do đó: ΔFAC vuông tại A
=>AF⊥ AC
mà BH⊥AC
nên AF//BH
Xét (O) có
ΔFBC nội tiếp
FC là đường kính
Do đó: ΔFBC vuông tại B
=>BF⊥BC
mà AH⊥BC
nên AH//BF
Xét tứ giác AHBF có
AH//BF
AF//BH
Do đó: AHBF là hình bình hành
=>AB cắt HF tại trung điểm của mỗi đường
mà Z là trung điểm của AB
nên Z là trung điểm của FH
=>FZ đi qua H(3)
Từ (1),(2),(3) suy ra DX,EY,FZ đồng quy tại H


Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)
Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.


\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)
Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).
Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).
Do đó ta có đpcm.