K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: Để hệ có nghiệm duy nhất thì \(\frac{1}{a}<>\frac{a}{1}\)

=>\(a^2<>1\)

=>a∉{1;-1](1)

\(\begin{cases}ax+y=3a\\ x+ay=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x+a\left(3a-ax\right)=2a+1\end{cases}\)

=>\(\begin{cases}y=3a-a\cdot x\\ x+3a^2-a^2\cdot x=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x\left(1-a^2\right)=2a+1-3a^2\end{cases}\)

=>\(\begin{cases}x=\frac{-3a^2+2a+1}{1-a^2}=\frac{3a^2-2a-1}{a^2-1}=\frac{\left(a-1\right)\left(3a+1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{3a+1}{a+1}\\ y=3a-a\cdot\frac{3a+1}{a+1}=\frac{3a^2+3a-3a^2-a}{a+1}=\frac{2a}{a+1}\end{cases}\)

Để x,y nguyên thì \(\begin{cases}3a+1\vdots a+1\\ 2a\vdots a+1\end{cases}\Rightarrow\begin{cases}3a+3-2\vdots a+1\\ 2a+2-2\vdots a+1\end{cases}\)

=>-2⋮a+1

=>a+1∈{1;-1;2;-2}

=>a∈{0;-2;1;-3}

Kết hợp (1), ta có: a∈{0;-2;-3}

Bài 3:

ĐKXĐ: x>=y

\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{8}}-\sqrt{\frac{x-y}{12}}=3\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \frac12\left(\sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}\right)=3\end{cases}\)

=>\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}=6\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}=10\\ \sqrt{\frac{x-y}{3}}=4\end{cases}\)

=>\(\begin{cases}\frac{x+y}{2}=100\\ \frac{x-y}{3}=16\end{cases}\Rightarrow\begin{cases}x+y=200\\ x-y=48\end{cases}\Rightarrow\begin{cases}x=\frac{200+48}{2}=\frac{248}{2}=124\\ y=200-124=76\end{cases}\) (nhận)

Bài 4:

a: ΔCAB vuông tại C

=>\(\hat{CAB}+\hat{CBA}=90^0\)

=>\(\hat{CBA}=90^0-70^0=20^0\)

Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)

=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)

ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-CA^2\)

=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)

b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)

Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)

Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)

Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)

\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)

Bài 5:

Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B

nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)

=>\(\hat{BMA}=39^0-18^0=21^0\)

Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)

=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)

=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)

Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)

=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)

=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

15 tháng 8

em cảm ơn a nhiều ạ

15 tháng 8

Bài 2:

Gọi vận tốc lúc đi là \(v\) (km/h), vận tốc lúc về là \(1,2 v\).
Quãng đường mỗi lượt là 120 km.

– Thời gian đi: \(\frac{120}{v}\)
– Thời gian về: \(\frac{120}{1,2 v} = \frac{100}{v}\)

Tổng thời gian đi và về bằng 4,4 giờ nên:

\(\frac{120}{v}+\frac{100}{v}=4,4\Rightarrow\frac{220}{v}=4,4\Rightarrow v=\frac{220}{4,4}=50(\text{km}/\text{h})\)

=> Vậy vận tốc lúc đi là 50 km/h, vận tốc lúc về là 60 km/h.

Bài 1b:

\(\frac{2}{3 x - 1} + \frac{1}{x} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} (Đ\text{KX}Đ:\&\text{nbsp}; x \neq 0 , \textrm{ }\textrm{ } 3 x \neq 1 )\)

Quy đồng:

\(\frac{2 x + \left(\right. 3 x - 1 \left.\right)}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow \frac{5 x - 1}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow 5 x - 1 = 4 \Rightarrow 5 x = 5 \Rightarrow x = 1\)

Kiểm tra ĐKXĐ: \(x = 1\) thỏa mãn.

=> Vậy nghiệm của phương trình là \(x = 1\).

15 tháng 8

tukgkdu

tungtungtungsahur




18 tháng 8

a, Ta có tam giác \(A B C\) nhọn, kẻ:

  • \(B D \bot A B\)
  • \(C D \bot A C\)

=> Các góc tại \(B\)\(C\) đều là góc vuông.

Ta xét tứ giác \(A B D C\):

  • \(\angle A B D = 90^{\circ}\) (do \(B D \bot A B\))
  • \(\angle A C D = 90^{\circ}\) (do \(C D \bot A C\))

Suy ra:

\(\angle A B D + \angle A C D = 180^{\circ}\)

Mà tổng góc trong tứ giác bằng \(360^{\circ}\), nên:

\(\angle B A D + \angle B C D + 180^{\circ} = 360^{\circ} \Rightarrow \angle B A D + \angle B C D = 180^{\circ}\)

\(\angle B A D\) chính là góc tại \(A\) của tam giác \(A B C\), ký hiệu là \(\angle A\),
\(\angle B C D\) chính là góc tại \(D\) trong tứ giác (ký hiệu là \(\angle D\)).

\(\Rightarrow \angle D + \angle A = 180^{\circ}\)

b, * Chứng minh \(Q J = B D\)

\(I\) là trung điểm của \(P Q\)\(B J\), nên:

  • \(I P = I Q\) (trung điểm \(P Q\))
  • \(I B = I J\) (trung điểm \(B J\))

Xét hai tam giác \(I P B\)\(I Q J\):

  • \(I P = I Q\) (gt)
  • \(I B = I J\) (gt)
  • \(\angle P I B = \angle Q I J\) (đối đỉnh)

⇒ Tam giác \(I P B\) ≅ tam giác \(Q I J\) (cạnh – cạnh – góc xen giữa)

Suy ra:

\(P B = Q J\)

Nhưng \(P B = A B - A P = A B - \left(\right. A B - B P \left.\right) = B P\), mà \(B P = B D\) (gt)

\(Q J = P B = B P = B D \Rightarrow \boxed{Q J = B D}\)

*Chứng minh \(\angle A Q J + \angle D = 180^{\circ}\)

Ta đã biết ở phần a): \(\angle A + \angle D = 180^{\circ} .\)

Ta sẽ chứng minh \(\angle A Q J = \angle A\)

Xét hai tam giác:

  • Tam giác \(A B P\): có \(B P = B D\) (gt)
  • Tam giác \(A C Q\): có \(C Q = C D\) (gt)

Do \(B D \bot A B\), \(C D \bot A C\)\(B D\) là đường cao tam giác \(A B C\), tương tự \(C D\) cũng là đường cao.

Suy ra tam giác \(A B P\) vuông tại \(B\), tam giác \(A C Q\) vuông tại \(C\). Hai điểm \(P , Q\) được lấy đối xứng vai trò như nhau theo hai cạnh của tam giác \(A B C\).

Lại có \(Q J = B D = B P\) (ở trên vừa chứng minh), do đó tam giác \(A Q J\) đồng dạng với tam giác \(A B C\)

\(\angle A Q J = \angle A .\)

Vậy:

\(\angle A Q J + \angle D = \angle A + \angle D = 180^{\circ} . \textrm{ }\textrm{ } \textrm{ } (đ\text{pcm})\)

10 tháng 8

giúp mình từ câu 9 với


21 giờ trước (19:10)

a: Xét (O) có

AD,BC là các dây không song song

AB//CD

Do đó: sđ cung AD=sđ cung BC

b: Ta có: ABCD là tứ giác nội tiếp

=>\(\hat{ADC}+\hat{ABC}=180^0\)

\(\hat{ABC}+\hat{BCD}=180^0\) (hai góc trong cùng phía, AB//CD)

nên \(\hat{ADC}=\hat{BCD}\)

Hình thang ABCD có \(\hat{ADC}=\hat{BCD}\)

nên ABCD là hình thang cân