
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bài 4:
a: ΔCAB vuông tại C
=>\(\hat{CAB}+\hat{CBA}=90^0\)
=>\(\hat{CBA}=90^0-70^0=20^0\)
Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)
=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)
ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=AB^2-CA^2\)
=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)
b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)
Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)
Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)
Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)
\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)
Bài 5:
Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B
nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)
=>\(\hat{BMA}=39^0-18^0=21^0\)
Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)
=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)
=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)
Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)
=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)
=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

Bài 2:
Gọi vận tốc lúc đi là \(v\) (km/h), vận tốc lúc về là \(1,2 v\).
Quãng đường mỗi lượt là 120 km.
– Thời gian đi: \(\frac{120}{v}\)
– Thời gian về: \(\frac{120}{1,2 v} = \frac{100}{v}\)
Tổng thời gian đi và về bằng 4,4 giờ nên:
\(\frac{120}{v}+\frac{100}{v}=4,4\Rightarrow\frac{220}{v}=4,4\Rightarrow v=\frac{220}{4,4}=50(\text{km}/\text{h})\)
=> Vậy vận tốc lúc đi là 50 km/h, vận tốc lúc về là 60 km/h.
Bài 1b:
\(\frac{2}{3 x - 1} + \frac{1}{x} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} (Đ\text{KX}Đ:\&\text{nbsp}; x \neq 0 , \textrm{ }\textrm{ } 3 x \neq 1 )\)
Quy đồng:
\(\frac{2 x + \left(\right. 3 x - 1 \left.\right)}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow \frac{5 x - 1}{x \left(\right. 3 x - 1 \left.\right)} = \frac{4}{x \left(\right. 3 x - 1 \left.\right)} \Rightarrow 5 x - 1 = 4 \Rightarrow 5 x = 5 \Rightarrow x = 1\)
Kiểm tra ĐKXĐ: \(x = 1\) thỏa mãn.
=> Vậy nghiệm của phương trình là \(x = 1\).

a, Ta có tam giác \(A B C\) nhọn, kẻ:
- \(B D \bot A B\)
- \(C D \bot A C\)
=> Các góc tại \(B\) và \(C\) đều là góc vuông.
Ta xét tứ giác \(A B D C\):
- \(\angle A B D = 90^{\circ}\) (do \(B D \bot A B\))
- \(\angle A C D = 90^{\circ}\) (do \(C D \bot A C\))
Suy ra:
\(\angle A B D + \angle A C D = 180^{\circ}\)
Mà tổng góc trong tứ giác bằng \(360^{\circ}\), nên:
\(\angle B A D + \angle B C D + 180^{\circ} = 360^{\circ} \Rightarrow \angle B A D + \angle B C D = 180^{\circ}\)
Mà \(\angle B A D\) chính là góc tại \(A\) của tam giác \(A B C\), ký hiệu là \(\angle A\),
\(\angle B C D\) chính là góc tại \(D\) trong tứ giác (ký hiệu là \(\angle D\)).
⇒ \(\Rightarrow \angle D + \angle A = 180^{\circ}\)
b, * Chứng minh \(Q J = B D\)
Vì \(I\) là trung điểm của \(P Q\) và \(B J\), nên:
- \(I P = I Q\) (trung điểm \(P Q\))
- \(I B = I J\) (trung điểm \(B J\))
Xét hai tam giác \(I P B\) và \(I Q J\):
- \(I P = I Q\) (gt)
- \(I B = I J\) (gt)
- \(\angle P I B = \angle Q I J\) (đối đỉnh)
⇒ Tam giác \(I P B\) ≅ tam giác \(Q I J\) (cạnh – cạnh – góc xen giữa)
Suy ra:
\(P B = Q J\)
Nhưng \(P B = A B - A P = A B - \left(\right. A B - B P \left.\right) = B P\), mà \(B P = B D\) (gt)
⇒ \(Q J = P B = B P = B D \Rightarrow \boxed{Q J = B D}\)
*Chứng minh \(\angle A Q J + \angle D = 180^{\circ}\)
Ta đã biết ở phần a): \(\angle A + \angle D = 180^{\circ} .\)
Ta sẽ chứng minh \(\angle A Q J = \angle A\)
Xét hai tam giác:
- Tam giác \(A B P\): có \(B P = B D\) (gt)
- Tam giác \(A C Q\): có \(C Q = C D\) (gt)
Do \(B D \bot A B\), \(C D \bot A C\) ⇒ \(B D\) là đường cao tam giác \(A B C\), tương tự \(C D\) cũng là đường cao.
Suy ra tam giác \(A B P\) vuông tại \(B\), tam giác \(A C Q\) vuông tại \(C\). Hai điểm \(P , Q\) được lấy đối xứng vai trò như nhau theo hai cạnh của tam giác \(A B C\).
Lại có \(Q J = B D = B P\) (ở trên vừa chứng minh), do đó tam giác \(A Q J\) đồng dạng với tam giác \(A B C\) ⇒
\(\angle A Q J = \angle A .\)
Vậy:
\(\angle A Q J + \angle D = \angle A + \angle D = 180^{\circ} . \textrm{ }\textrm{ } \textrm{ } (đ\text{pcm})\)


a: Xét (O) có
AD,BC là các dây không song song
AB//CD
Do đó: sđ cung AD=sđ cung BC
b: Ta có: ABCD là tứ giác nội tiếp
=>\(\hat{ADC}+\hat{ABC}=180^0\)
mà \(\hat{ABC}+\hat{BCD}=180^0\) (hai góc trong cùng phía, AB//CD)
nên \(\hat{ADC}=\hat{BCD}\)
Hình thang ABCD có \(\hat{ADC}=\hat{BCD}\)
nên ABCD là hình thang cân


Bài 2: Để hệ có nghiệm duy nhất thì \(\frac{1}{a}<>\frac{a}{1}\)
=>\(a^2<>1\)
=>a∉{1;-1](1)
\(\begin{cases}ax+y=3a\\ x+ay=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x+a\left(3a-ax\right)=2a+1\end{cases}\)
=>\(\begin{cases}y=3a-a\cdot x\\ x+3a^2-a^2\cdot x=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x\left(1-a^2\right)=2a+1-3a^2\end{cases}\)
=>\(\begin{cases}x=\frac{-3a^2+2a+1}{1-a^2}=\frac{3a^2-2a-1}{a^2-1}=\frac{\left(a-1\right)\left(3a+1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{3a+1}{a+1}\\ y=3a-a\cdot\frac{3a+1}{a+1}=\frac{3a^2+3a-3a^2-a}{a+1}=\frac{2a}{a+1}\end{cases}\)
Để x,y nguyên thì \(\begin{cases}3a+1\vdots a+1\\ 2a\vdots a+1\end{cases}\Rightarrow\begin{cases}3a+3-2\vdots a+1\\ 2a+2-2\vdots a+1\end{cases}\)
=>-2⋮a+1
=>a+1∈{1;-1;2;-2}
=>a∈{0;-2;1;-3}
Kết hợp (1), ta có: a∈{0;-2;-3}
Bài 3:
ĐKXĐ: x>=y
\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{8}}-\sqrt{\frac{x-y}{12}}=3\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \frac12\left(\sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}\right)=3\end{cases}\)
=>\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}=6\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}=10\\ \sqrt{\frac{x-y}{3}}=4\end{cases}\)
=>\(\begin{cases}\frac{x+y}{2}=100\\ \frac{x-y}{3}=16\end{cases}\Rightarrow\begin{cases}x+y=200\\ x-y=48\end{cases}\Rightarrow\begin{cases}x=\frac{200+48}{2}=\frac{248}{2}=124\\ y=200-124=76\end{cases}\) (nhận)