Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
B=\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+\(\dfrac{1}{2^4}\)+.........+\(\dfrac{1}{2^{2017}}\)
2B=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+.......+\(\dfrac{1}{2^{2016}}\)
2B-B=(1+\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+.......+\(\dfrac{1}{2^{2016}}\))-(\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+\(\dfrac{1}{2^4}\)+.......+\(\dfrac{1}{2^{2017}}\))
B=1-\(\dfrac{1}{2^{2017}}\)
Vậy B=1-\(\dfrac{1}{2^{2017}}\)
a, Gọi d là ước chung của 21n + 4 và 14n + 3 \(\left(d\in Z,d\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)
+) Vì : \(21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
+) Vì : \(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow42n+9-48n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{1;-1\right\}\) => \(\dfrac{21n+4}{14n+3}\) là phân số tối giản
b, tương tự
c, Gọi d là ước chung của 2n + 3 và n2 + 3n + 2 \(\left(d\in Z,d\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\n^2+3n+2⋮d\end{matrix}\right.\)
+) Vì \(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)
+) Vì : \(n^2+3n+2⋮d\Rightarrow2\left(n^2+3n+2\right)⋮d\Rightarrow2n^2+6n+4⋮d\)
Mà : \(2n^2+3n⋮d\)
\(\Rightarrow\left(2n^2+6n+4\right)-\left(2n^2+3n\right)⋮d\)
\(\Rightarrow2n^2+6n+4-2n^2-3n⋮d\Rightarrow3n+4⋮d\)
\(\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)
Vì : \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\Rightarrow\dfrac{2n+3}{n^2+3n+2}\) là phân số tối giản
d, tương tự câu c
Mình làm 1 câu thôi các câu sau bạn làm theo mẫu nhé
Gọi d là UCLN(21n+4;14n+3)
\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
\(\Leftrightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
Vì
\(42n+8;42n+9⋮d\)
\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n
Bài 1:
a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Quy đồng \(VP\) ta được:
\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)
\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
\(\Rightarrow VP=VT\)
Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
Bài 3:
a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{9}\)
\(=\dfrac{7}{18}\)
B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(=\dfrac{1}{5}-\dfrac{1}{12}\)
\(=\dfrac{7}{60}\)
Bài 1:
Theo đề, ta có:
\(\dfrac{a+6}{b+14}=\dfrac{3}{7}\)
=>7a+42=3b+42
=>7a=3b
hay a/b=3/7
Ta có: \(\dfrac{1}{a}-\dfrac{1}{a+1}=\dfrac{a+1}{a\left(a+1\right)}-\dfrac{a}{a\left(a+1\right)}\)
\(=\dfrac{a+1-a}{a\left(a+1\right)}\)
\(=\dfrac{1}{a\left(a+1\right)}\) (đpcm)
Ta được:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+...-\dfrac{1}{100}\) \(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
=> d = 1
=> đpcm
b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)
ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 là số lẻ
=> d = 1
=> đpcm
c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)
Ta có: \(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=> d = 1
=> đpcm
, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)
Ta có: ⎧⎨⎩n+1⋮d2n+3⋮d⇒⎧⎨⎩2n+2⋮d2n+3⋮d{n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d
⇒2n+3−(2n+2)⋮d⇒2n+3−(2n+2)⋮d
⇒1⋮d⇒1⋮d
=> d = 1
=> đpcm
b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)
ta có: ⎧⎨⎩2n+3⋮d4n+8⋮d⇒⎧⎨⎩4n+6⋮d4n+8⋮d{2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d
⇒4n+8−(4n+6)⋮d⇒4n+8−(4n+6)⋮d
⇒2⋮d⇒2⋮d
⇒d∈{1;2}⇒d∈{1;2}
Mà 2n + 3 là số lẻ
=> d = 1
=> đpcm
c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)
Ta có: ⎧⎨⎩3n+2⋮d5n+3⋮d⇒⎧⎨⎩15n+10⋮d15n+9⋮d{3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d
⇒15n+10−(15n+9)⋮d⇒15n+10−(15n+9)⋮d
⇒1⋮d⇒1⋮d
=> d = 1
=> đpcm
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
a,Vế trái:
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)
\(=\dfrac{1}{1008}+\dfrac{1}{2009}+...+\dfrac{1}{2014}\)
b,chưa có câu trả lời, sorry nha
a) Đặt ƯCLN(n+1; 2n+3) = d
\(\Rightarrow\left\{\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\) \(\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Leftrightarrow d\inƯ_{\left(1\right)}=1\)
Vậy phân số \(\frac{n+1}{2n+3}\) tối giản với mọi \(n\in N\).
b) Đặt ƯCLN(2n+3; 4n+8) = d.
\(\Rightarrow\left\{\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow4n+8-4n-6⋮d\)
\(\Rightarrow2⋮d\Leftrightarrow d\inƯ_{\left(2\right)}=\left\{1;2\right\}\)
Mà \(2n+3=2n+2+1\) có \(2n+2⋮2\) nhưng \(1⋮̸2\)
\(\Rightarrow d=1\)
Vậy phân số \(\frac{2n+3}{4n+8}\) tối giản với mọi \(n\in N\).
c) Đặt ƯCLN(3n+2; 5n+3) = d.
\(\Rightarrow\left\{\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow15n+10-15n-9⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d\inƯ_{\left(1\right)}=1\)
Vậy phân số \(\frac{3n+2}{5n+3}\) tối giản với mọi \(n\in N\).
Nếu các phân số trên là phân số tối giản thì ước chung lớn nhât của tử và mẫu của các phân số phải là 1
Gọi d là ước chung lớn nhất của tử và mẫu các phân số
a, n+1 chia hết cho d =>2n+2 chia hết cho d
2n+3 chia hết cho d
Từ hai giả thiết trên =>(2n+3)-(2n+2) chia hết cho d
1 chia hết cho d
=>d=1
Phân số trên tối giản với mọi số tự nhiên n
b,2n+3 chia hết cho d =>4n+6 chia hết cho d
4n+8 chia hết cho d
Từ hai giả thiết trên =>(4n+8)-(4n+6) chia hết cho d
=> 2 chia hết cho d
=>d thuộc {1;2}
Phân số trên chưa tối giản với mọi số tự nhiên n
c, 3n+2 chia hết cho d => 15n+10 chia hết cho d
5n+8 chia hết cho d => 15n+24 chia hết cho d
Từ hai giả thiết trên => (15n+24)-(15n+10) chia hết cho d
=> 14 chia hết cho d
=>d {1;2;7;14)
Phân số trên chưa tối giản với mọi số tự nhiên n
Mình làm xong rồi,nếu bài này chứng minh các phân số đều tối giản thì chắc chắn sai đề,không tin các bạn thử xem ở phân số b với c ý
a: \(A=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+...+\dfrac{1}{999\cdot500}\)
\(=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+...+\dfrac{2}{999\cdot1000}\)
\(=2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{999\cdot1000}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{999}-\dfrac{1}{1000}\right)\)
\(=2\left(1-\dfrac{1}{1000}\right)=2\cdot\dfrac{999}{1000}=\dfrac{999}{500}\)
b: Gọi d=ƯCLN(n+2;3n+5)
=>\(\left\{{}\begin{matrix}n+2⋮d\\3n+5⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3n+6⋮d\\3n+5⋮d\end{matrix}\right.\)
=>\(3n+6-3n-5⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(n+2;3n+5)=1
=>\(\dfrac{n+2}{3n+5}\) là phân số tối giản