Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\left(x^2+x+5\right)\left(5-x^2-x\right)=25-\left(x^2+x\right)^2\le25\)
Dấu = xảy ra khi \(x^2+x=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
=> \(-Q=\left(x^2+x+5\right)\left(x^2+x-5\right)\)
=> \(-Q=\left(x^2+x\right)^2-25\)
Có: \(\left(x^2+x\right)^2\ge0\forall x\)
=> \(-Q\ge-25\forall x\)
=> \(Q\le25\)
DẤU "=" XẢY RA <=> \(\left(x^2+x\right)^2=0\)
<=> \(x^2+x=0\)
<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
VẬY Q MAX = 25 <=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
a) Xét ∆AND và ∆CMB có:
BM=DN (giả thiết)
AD=BC(các cạnh đối bằng nhau)
góc ADN=góc CBM( so le trong)
Vậy ∆AND=∆CMB( cạnh góc cạnh)
=> AN=CM( 2 cạnh tương ứng)( điều phải chứng minh)
b)AN//CM( góc ANM= góc CMN so le trong)và AN=CM( chứng minh trên)
=> Tứ giác AMCN là hình bình hành(điều phải chứng minh)
c)AN//CM mà N thuộc AI và M thuộc CK
->AI//CK
AB//DC mà K thuộc AB và I thuộc DC
->AK//DI
Vậy tứ giác AKCI là hình bình hành( các cạnh đối song song)
=> AC và KI là đường chéo của hình bình hành AKCI
=> AO= OC; KO=OI ( hai đường chéo cắt nhau tại trung điểm mỗi đường)
Vậy K,O,I cùng nằm trên cùng 1 đường thẳng( điều phải chứng minh)
hok tốt
Gọi độ dài quãng đường AB là x (km) (x > 0)
Thời gian xe đạp đi là: \(\frac{x}{12}\) (h)
Thời gian xe máy đi là: \(\frac{x}{30}\left(h\right)\)
Thời gian xe đạp đi nhiều hơn xe máy là:
3 giờ + 15 phút = 3 giờ 15 phút \(=\frac{13}{4}\) (giờ)
Ta có: \(\frac{x}{12}-\frac{x}{30}=\frac{13}{4}\)
\(\Leftrightarrow\frac{5x-2x}{60}=\frac{195}{60}\Leftrightarrow5x-2x=195\Leftrightarrow x=65\) (thỏa mãn)
Vậy quãng đường AB dài 65 km
Gọi chiều dài con đường là x ( m )\(\left(x\ge50\right)\)
Nếu mỗi ngày họ đắp được 50m đường thì họ hoàn thành công việc sớm hơn quy định 1 ngày
\(\Rightarrow\)Số ngày quy định là: \(\frac{x}{50}+1\)( ngày )
Nếu mỗi ngày họ chỉ đắp được 30m thì họ hoàn thành công việc đó chậm hơn quy đinh 2 ngày
\(\Rightarrow\)Số ngày quy định là \(\frac{x}{30}-2\)( ngày )
Theo bài, ta có: \(\frac{x}{50}+1=\frac{x}{30}-2\)
\(\Leftrightarrow\frac{x}{30}-\frac{x}{50}=1+2\)\(\Leftrightarrow x\left(\frac{1}{30}-\frac{1}{50}\right)=3\)
\(\Leftrightarrow x.\frac{1}{75}=3\)\(\Leftrightarrow x=225\)( thoả mãn ĐK )
Vậy chiều dài quãng đường là 225m
a) A = ( x - 2y )3 + ( x + 2y )3 - 2x ( x2 + y )=
= x3 - 6x2y + 12xy2 - 8y3 + x3 + 6x2y + 12xy2 + 8y3 - 2x3 - 2xy
= 24xy2 - 2xy
b) B = ( x - 1 )( x + y ) ( x - y ) - x2( x - 1 )=
= ( x -1 )( x2 - y2 ) - x2 ( x - 1 )
= ( x - 1 )( x2 - y2 - x2 )
= -y2 ( x - 1 )
c ) C = ( x + 2)2 - 2( x + 2 )( x - 8 ) + ( x - 8 ) 2 =
= ( x + 2 - x + 8 ) 2
= 102
= 100
HOk tốt!!!!!!!!!!
Bài 2 : a) \(2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
b) \(2\left(2x-1\right)+6x\left(2x-1\right)=0\Leftrightarrow\left(2x-1\right)\left(2+6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2+6x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\6x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{2}{6}=-\frac{1}{3}\end{cases}}}\)
c) \(\left(x-3\right)^2-\left(2x+6\right)^2=0\Leftrightarrow\left(x-3-2x-6\right)\left(x-3+2x+6\right)=0\)
\(\Leftrightarrow\left(-x-9\right)\left(3x+3\right)=0\Leftrightarrow\orbr{\begin{cases}-x-9=0\\3x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-9\\x=-1\end{cases}}}\)
Tự KL cho các phần