K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2024

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4 2024

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)

 

18 tháng 3 2018

a, \(P=8x^2-7x^3+6x-5x^2+2x^3+3x^2-8x\)

\(=\left(8x^2-5x^2+3x^2\right)+\left(-7x^3+2x^3\right)+\left(6x-8x\right)\)

\(=6x^2-5x^3-2x\)

Thay x = -1 vào P ta được:

\(P=6.\left(-1\right)^2-5.\left(-1\right)^3-2.\left(-1\right)=6+5+2=13\)

b, \(Q=-2x^2y+4y+11x^2y\)

\(=\left(-2x^2y+11x^2y\right)+4y\)

\(=9x^2y+4y\)

Thay  \(x=\frac{-1}{3};y=\frac{11}{4}\)vào Q ta được:

\(Q=9.\left(-\frac{1}{3}\right)^2.\frac{11}{4}-4.\frac{11}{4}=9\cdot\frac{1}{9}\cdot\frac{11}{4}-11=\frac{11}{4}-11=\frac{-33}{4}\)

18 tháng 3 2018

P=8x^2-7x^3+6x-5x^2+2x^3-8x

Thay x=-1 vào biểu thức trên ta có:

8.-1^2-7.-1x^3+6.-1-5.-1^2+2.-1^3-8.-1=4

Vậy giá trị của biểu thức 8x^2-7x^3+6x-5x^2+2x^3-8x tại x=-1 là4

Q=-2x^2y+4y+11x^2y

thay x=-1/3 và y=11/4 vào biểu thức trên ta có:

-2.-1/3^2.11/4+4.11/4+11.-1/3^2.11/4=-11/4

Vậy giá trị của biểu thức -2x^2y+4y+11x^2y

7 tháng 6 2017

1.

a, Để \(\dfrac{x+1}{x^2-2}\) có nghĩa \(\Leftrightarrow x^2-2\ne0\Leftrightarrow x^2\ne2\Leftrightarrow\left\{{}\begin{matrix}x\ne\sqrt{2}\\x\ne-\sqrt{2}\end{matrix}\right.\)

b, Để \(\dfrac{x-1}{x^2+1}\)có nghĩa \(\Leftrightarrow x^2+1\ne0\Leftrightarrow x^2\ne-1\)

\(x^2\ge0\forall x\in R\).

Vậy biểu thức trên luôn luôn có nghĩa.

c, Để \(\dfrac{ax+by+c}{xy-3y}cónghĩa\Leftrightarrow xy-3y=y\left(x-3\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\).

26 tháng 7 2017

\(a,-x^4\left(yx\right)^2\left(-x\right)^2\left(-y\right)^3=x^8y^5\)

\(\dfrac{1}{2}ax^3\left(-xy\right)\left(-y\right)^2=\dfrac{1}{2}ax^4y^2\)

\(-\dfrac{4}{5}y\left(\dfrac{3}{2}x^2y\right)^4=-\dfrac{81}{20}x^8y^5\)

26 tháng 7 2017

b, \(\dfrac{1}{2}ax^3\left(-xy\right)\left(-y\right)^2\)

\(=-\dfrac{a}{2}x^4y^3\)

c, \(-\dfrac{4}{5}y\left(\dfrac{3}{2}x^2y\right)^4\)

\(=-\dfrac{4}{5}y.\dfrac{81}{16}x^8y^4=-\dfrac{81}{20}x^8y^5\)

Chúc bạn học tốt!!!

I/ Trắc nghiêm Câu 1: Gía trị của biểu thức x3y - x2y2 - 5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả của phép nhân hai đơn thức (-\(\dfrac{1}{3}\) x3y)2.(-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 ...
Đọc tiếp

I/ Trắc nghiêm

Câu 1: Gía trị của biểu thức x3y - x2y2 - 5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả của phép nhân hai đơn thức (-\(\dfrac{1}{3}\) x3y)2.(-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)
Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Phần tự luận

Bài 1: Thu gọn biểu thức, tìm bậc, hệ số và phần biến.

\(\dfrac{-2}{3}\) x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1

b) Tính giá trị của đa thức A, biết x = 1; y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?
Giúp mình nha. Mk mơn nhìu ạ

2
22 tháng 4 2018

I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x

22 tháng 4 2018

hơi khó hiểu

bn chịu khó nha

I/ Trắc nghiệm: Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 D. 7 Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\)...
Đọc tiếp

I/ Trắc nghiệm:

Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)

Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Tự luận

Bài 1; Thu gọn biểu thức, tìm bậc, hệ số và phần biến

\(\dfrac{-2}{3}\)​x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A,biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1
b) Tính giá trị của đa thức A, biết x = 1, y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?

1
5 tháng 4 2018

I . Trắc Nghiệm

1B . 2D . 3C . 5A

II . Tự luận

2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1

\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)

=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1

=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)

= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

b, thay x=1,y=2 vào đa thức A

Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2

= -6 + 12 - 12 - 2

= -8

3,Sắp xếp

f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x

g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)

= 3x\(^2\) + x

g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x

=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)

= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x

28 tháng 8 2020

Bài làm:

Ta có: Áp dụng bất đẳng thức Bunhiacopxki

=> \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi a,b,x,y là số thực

=> \(A\le B\)

Dấu "=" xảy ra khi: \(a+b=x+y\)

Thay vào ta được: \(2-1=1>\frac{8}{11}-\frac{5}{11}=\frac{3}{11}\)

=> \(A< B\)

Ngứa tay làm bằng Bunhia, có gì sai xót xin thông cảm ạ:)

28 tháng 8 2020

+) \(A=\left(2.\frac{8}{11}+\left(-1\right).\left(\frac{-5}{11}\right)\right)^2=\left(\frac{16}{11}+\frac{5}{11}\right)^2=\left(\frac{21}{11}\right)^2=\frac{441}{121}\)

+) \(B=\left(2^2+\left(-1\right)^2\right)\left(\frac{8^2}{11^2}+\frac{\left(-5\right)^2}{11^2}\right)\)

\(B=\left(4+1\right)\left(\frac{64+25}{121}\right)=5.\frac{89}{121}=\frac{445}{121}\)

11 tháng 1 2018

bài 1:

|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1

a

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5

= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5

= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5

= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)

b) +) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1

= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)

+) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1

= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)

11 tháng 1 2018

bài 3

x.y.z = 2 và x + y + z = 0

A = ( x + y )( y +z )( z + x )

= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )

= 0 + 2 = 2

bài 4

a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)

=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)

=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)

x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)

2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0

x = 0 : 2 = 2

a: \(P=-5x^3+6x^2-2x\)

\(=-5\cdot\left(-1\right)^3+6\cdot\left(-1\right)^2-2\cdot\left(-1\right)\)

\(=-5\cdot\left(-1\right)+6+2=5+6+2=13\)

b: \(Q=-2\cdot\left(-\dfrac{1}{3}\right)^2\cdot\dfrac{11}{4}+4\cdot\dfrac{11}{4}+11\cdot\dfrac{1}{9}\cdot\dfrac{11}{4}\)

\(=-\dfrac{11}{2}\cdot\dfrac{1}{9}+11+\dfrac{121}{36}=\dfrac{55}{4}\)