K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

\(\frac{x-4}{x-2}\)

\(\frac{x-2+6}{x-2}\)

\(\frac{x-2}{x-2}+\frac{6}{x-2}\)

1+\(\frac{6}{x-2}\)

\(\Rightarrow\)x-2   \(\in\)(6)

tính các trường hợp x-2=1

 x-2=-1, .... là ra thôi

27 tháng 9 2019

a) 

Để A nguyên \(\Leftrightarrow x^3+x⋮x-1\)

\(\Leftrightarrow x^3-1+x+1⋮x-1\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+x+1⋮x-1\left(1\right)\)

Vì x nguyên \(\Rightarrow\hept{\begin{cases}x-1\in Z\\x^2+x+1\in Z\end{cases}}\)

\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)⋮x-1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x+1⋮x-1\)

\(\Leftrightarrow x-1+2⋮x-1\)

Mà \(x-1⋮x-1\)

\(\Rightarrow2⋮x-1\)

\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)

Vậy \(x\in\left\{-1;0;2;3\right\}\)

27 tháng 9 2019

b) Để B nguyên \(\Leftrightarrow x^2-4x+5⋮2x-1\)

\(\Leftrightarrow2x^2-8x+10⋮2x-1\)

\(\Leftrightarrow\left(2x^2-x\right)-\left(6x-3\right)-\left(x-7\right)⋮2x-1\)

\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)-\left(x-7\right)⋮2x-1\)

\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)-\left(x-7\right)⋮2x-1\left(1\right)\)

Vì x nguyên \(\Rightarrow\hept{\begin{cases}2x-1\in Z\\x-3\in Z\end{cases}}\)

\(\Rightarrow\left(2x-1\right)\left(x-3\right)⋮2x-1\left(2\right)\)

Từ (1) và(2) \(\Rightarrow x-7⋮2x-1\)

\(\Leftrightarrow2x-14⋮2x-1\)

\(\Leftrightarrow2x-1-13⋮2x-1\)

Mà \(2x-1⋮2x-1\)

\(\Rightarrow13⋮2x-1\)

\(\Rightarrow2x-1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

Làm nốt nha các phần còn lại bạn cứ dựa bài mình mà làm 

14 tháng 12 2016

ta có x^2 -4 = (x-2)(x+2)

đkxđ của C là x khác 2 và trừ 2

\(\frac{x^3}{x^2-4}\)\(\frac{x}{x-2}\)\(\frac{2}{x+2}\)\(\frac{x^3}{\left(x-2\right)\left(x+2\right)}\)\(\frac{x}{x-2}\)\(\frac{2}{x+2}\)

\(\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)

\(\frac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\frac{\left(x^2-4\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)\(\frac{\left(x-2\right)\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)= x- 1

để C = 0 => x-1 = 0

=> x= 1 ( thỏa mãn điều kiện xác định)

c, để C dương 

=> x-1 dương 

=> x-1 >0

=> x>1

14 tháng 12 2016

a) Để biểu thức xác định \(\Rightarrow\hept{\begin{cases}x^2-4\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)

\(\Rightarrow x\ne2;-2\)

Vậy ...

b) \(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^3-\left(x^2+2x\right)-\left(2x-4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^3-x^2\right)-\left(4x-4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^2-4\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x-2\right)\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)

Để C = 0 \(\Rightarrow x-1=0\) 

\(\Rightarrow x=1\)

Vậy ...

c) Để C > 0 thì \(x-1>0\Rightarrow x>1\)

Vậy ...

28 tháng 12 2016

Muốn làm phần E vẫn phải làm phần a) ,b

28 tháng 12 2016

a, gt của B xđ là x\(\ne\)2,x\(\ne\)-2

b, kq \(\frac{-8}{x+2}\)

24 tháng 1 2020

a) \(H=\left(\frac{x}{x+2}-\frac{x^3-8}{x^3+8}.\frac{x^2-2x+4}{x^2-4}\right).\frac{x+3}{x+2}\)

\(=\left(\frac{x}{x+2}-\frac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{x^2-2x+4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+3}{x+2}\)

\(=\left(\frac{x^2+2x}{\left(x+2\right)^2}-\frac{\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right).\frac{x+3}{x+2}\)

\(=\frac{-4}{\left(x+2\right)^2}.\frac{x+3}{x+2}=\frac{-4x-12}{\left(x+2\right)^3}\)

2 tháng 12 2021

\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)

a) ĐKXĐ: \(\hept{\begin{cases}x+3\ne0\\3-x\ne0\\x^2-9\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\\x\ne3;x\ne-3\end{cases}}}\)

Vậy ĐKXĐ: x khác -3; x khác 3 ( b vào tcn của mìnk để thấy chi tiết)

Rút gọn:

\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)

\(\Leftrightarrow A=\frac{5}{x+3}+\frac{2}{x-3}-\frac{3x^2-2x-9}{\left(x-3\right)\left(x+3\right)}\) MTC: (x-3)(x+3)

\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-\left(3x^2-2x-9\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{9x-3x^2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{3x\left(3-x\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-3x}{x+3}\)

Vậy A=-3x/x+3 với x khác 3 và x khác -3

b) |x-2|=1

Bỏ dấu gt tuyệt đối ta có 2 TH: (đối chiếu đkxđ)

* x-2=1=> x=1+2=>x=3 (o t/m)

*x-2=-1=>x=-1+2=>x=1 (tm)

Thay x=1 vào phân thức A rút gọn ta có:

\(A=\frac{-3x}{x+3}=\frac{-3.1}{1+3}=\frac{-3}{4}\)

Vậy A=-3/4 khi x=1

c) Để A có gt nguyên => A thuộc Z

=> \(A=\frac{-3x}{x+3}\in Z\)

Ta có:  -3x chia hết x+3

=> -3(x-3)-9 chia hết x+3

=> -9 chia hết cho x+3

=>  x+3 thược Ư(-9)={1;-1;9;-9;3;-3)

Lập bảng thay vào hoặc o cần cx được 

x+31-19-93-3
x-2(tm)-4(tm)6(tm)-12(tm)0(tm)-6(tm)

Vậy...


 

1 tháng 8 2016

\(A=\frac{-1}{2x+3}\)
Để A có giá trị nguyên thì -1 phải chia hết cho 2x+3
                            hay 2x+3\(\in\)Ư(-1)={1;-1}
                             =>x={-1;-2}