Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
\(A=\dfrac{-22x^2-5x+6}{3x^2}=-\dfrac{22}{3}-\dfrac{5}{3x}+\dfrac{2}{x^2}\)
\(=\dfrac{2}{x^2}-\dfrac{5}{3x}+\dfrac{25}{72}-\dfrac{553}{72}\)
\(=\left(\dfrac{\sqrt{2}}{x}-\dfrac{5\sqrt{2}}{12}\right)^2-\dfrac{553}{72}\ge\dfrac{-553}{72}\)
Đẳng thức xảy ra \(\Leftrightarrow\left(\dfrac{\sqrt{2}}{x}-\dfrac{5\sqrt{2}}{12}\right)^2=0\Leftrightarrow x=\dfrac{12}{5}\)
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông
a, không nhìn rõ
b, \(\dfrac{a+2\sqrt{a}+1}{a-1}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)
a, Thay x = 49 ta được : \(M=\frac{49+7}{7-5}=\frac{56}{2}=28\)
b, Với \(x\ge0;x\ne25\)
\(N=\frac{\sqrt{x}}{\sqrt{x}+5}+\frac{2\sqrt{x}-3}{\sqrt{x}-5}-\frac{2x-3\sqrt{x}-15}{x-25}\)
\(=\frac{x-5\sqrt{x}+\left(2\sqrt{x}-3\right)\left(\sqrt{x}+5\right)-2x+3\sqrt{x}+15}{x-25}\)
\(=\frac{-x-2\sqrt{x}+15+2x+7\sqrt{x}-15}{x-25}=\frac{x+5\sqrt{x}}{x-25}=\frac{\sqrt{x}}{\sqrt{x}-5}\)
c, Ta có : \(P=\frac{M}{N}\Rightarrow\frac{x+7}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}-5}=\frac{x+7}{\sqrt{x}}=\sqrt{x}+\frac{7}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{7}{\sqrt{x}}}=2\sqrt{7}\)
Dấu ''='' xảy ra khi \(\sqrt{x}=\frac{7}{\sqrt{x}}\Rightarrow x=7\)riêng ý c thì mình ko chắc :((
a.\(x=49\Rightarrow M=\frac{49+7}{\sqrt{49}-5}=\frac{56}{2}=28\)
\(N=\frac{\sqrt{x}\left(\sqrt{x}-5\right)+\left(2\sqrt{x}-3\right)\left(\sqrt{x}+5\right)-2x+3\sqrt{x}+15}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{x-5\sqrt{x}+2x+7\sqrt{x}-15-2x+3\sqrt{x}+15}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{x+5\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}}{\sqrt{x}-5}\)
\(c.P=M:N=\frac{x+7}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}-5}=\frac{x+7}{\sqrt{x}}=\sqrt{x}+\frac{7}{\sqrt{x}}\ge2\sqrt{7}\)