Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(a=1-\sqrt{2}\),ta có
\(1-a=\sqrt{2}\)\(\Rightarrow\left(1-a\right)^2=2\)
\(\Rightarrow a^2-2a+1=2\Rightarrow a^2-2a-1=0\)
\(\Rightarrow x^2-2x-1=0\)nhận \(1-\sqrt{2}\)là nghiệm
\(\Rightarrow b=-2;c=-1\)
\(Q=\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\left(ĐK:x\ge0;x\ne16\right)\\ =\dfrac{x-4\sqrt{x}+\sqrt{x}-4}{x-4\sqrt{x}+3\sqrt{x}-12}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-4\right)+3\left(\sqrt{x}-4\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-4\right)}\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(P=\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)
\(N=x+2y-\sqrt{2x-1}-5\sqrt{4y-3}+13\)
\(2N=2x+4y-2\sqrt{2x-1}-10\sqrt{4y-3}+26\)
\(=\left(2x-1-2\sqrt{2x-1}+1\right)+\left(4y-3-10\sqrt{4y-3}+25\right)+4\)
\(=\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{4y-3}-5\right)^2+4\ge4\)
1.\(\frac{3\sqrt{128}}{\sqrt{2}}=\frac{\sqrt{9.128}}{\sqrt{2}}=\sqrt{\frac{1152}{2}}=\sqrt{576}=24\)
\(a,\sqrt{2x-1}=2\)
\(\Rightarrow2x-1=4\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=\frac{5}{2}\)
\(b,\sqrt{2x-1}=x+1\)
\(\Rightarrow2x-1=\left(x+1\right)^2\)
\(\Rightarrow2x-1=x^2+2x+1\)
\(\Rightarrow x^2+2x-2x=-1-1\)
\(\Rightarrow x^2=-2VN\)
a) điều kiện xác định : \(x\ge0;x\ne1\)
\(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\) \(\Leftrightarrow P=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) \(\Leftrightarrow P=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) \(\Leftrightarrow P=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)b) để \(P=\dfrac{1}{2}\Leftrightarrow\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{1}{2}\Leftrightarrow4-10\sqrt{x}=\sqrt{x}+3\)
\(\Leftrightarrow11\sqrt{x}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{11}\Leftrightarrow x=\dfrac{1}{121}\)
c) ta có : \(P-\dfrac{2}{3}\Leftrightarrow\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}-\dfrac{2}{3}=\dfrac{6-15\sqrt{x}-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\forall x\ge0\) \(\Rightarrow p< \dfrac{2}{3}\left(đpcm\right)\)