\(M\left(x\right)=2x^3-5x^2+x-2\)

\(N \left(x\right)=-3x^3+5x^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

\(a;M\left(x\right)+N\left(x\right)=\left(2x^3-5x^2+x-2\right)+\left(-3x^3+5x^2-x+1\right)\)

                                \(=2x^3-5x^2+x-2-3x^3+5x^2-x+1\)

                                  \(=-x^3-1\)

\(b;M\left(x\right)-N\left(x\right)=\left(2x^3-5x^2+x^2-2\right)-\left(-3x^3+5x^2-x+1\right)\)

                                  \(=2x^3-5x^2+x-2+3x^3-5x^2+x-1\)

                                   \(=5x^3-10x^2+2x-3\)

\(c;3N\left(x\right)-2M\left(x\right)=3\left(2x^3-5x^2+x-2\right)-2\left(-3x^3+5x^2-x+1\right)\)

                                      \(=6x^3-15x^2+3x-6+6x^3-10x^2+2x-2\)

                                       \(=12x^3-25x^2+5x-8\)

18 tháng 5 2017

\(M\left(x\right)+N\left(x\right)\)

\(=5x^3-x^2-4+2x^4-2x^2+2x+1\)

\(=2x^4+5x^3-3x^2+2x-3\)

\(M\left(x\right)-N\left(x\right)\)

\(=5x^3-x^2-4-\left(2x^4-2x^2+2x+1\right)\)

\(=5x^3-x^2-4-2x^4+2x^2-2x-1\)

\(=-2x^4+5x^3+x^2-2x-5\)

\(M\left(x\right)+P\left(x\right)=N\left(x\right)\)

\(\Rightarrow P\left(x\right)=N\left(x\right)-M\left(x\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-\left(5x^3-x^2-4\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-5x^3+x^2+4\)

\(\Rightarrow P\left(x\right)=2x^4-5x^3-x^2+2x+5\)

15 tháng 8 2017

c, \(\left|4-x\right|+2x=3\)(1)

+, Xét \(x\le4\) thì \(4-x\ge0\Rightarrow\left|4-x\right|=4-x\)

Thay vào (1) ta có:

\(4-x+2x=3\)

\(\Rightarrow x=-1\)(chọn vì thoả mãn điều kiện \(x\le4;x\in Z\) )

+, Xét \(x>4\) thì \(4-x< 0\Rightarrow\left|4-x\right|=x-4\)

Thay vào (1) ta có:

\(x-4+2x=3\)

\(\Rightarrow3x=7\Rightarrow x=\dfrac{7}{3}\)(loại vì không thoả mãn điều kiện \(x\in Z\))

Vậy..........

Chúc bạn học tốt!!!

15 tháng 8 2017

a, \(\left|5x-3\right|< 2\)

\(\left|5x-3\right|\ge0\)

\(\Leftrightarrow\left|5x-3\right|\in\left\{0;1\right\}\)

+) \(\left|5x-3\right|=0\)

\(\Leftrightarrow5x-3=0\)

\(\Leftrightarrow5x=3\)

\(\Leftrightarrow x=\dfrac{3}{5}\)

+) \(\left|5x-3\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-3=1\\5x-3=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=4\\5x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{2}{5}\end{matrix}\right.\)

Vậy ................

25 tháng 7 2017

143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)

\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)

\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)

\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)

b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)

\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)

\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)

Rút gọn các đa thức đồng dạng, ta có kết quả:

\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)

Kết quả đã được xếp theo lũy thừa giảm dần của x

20 tháng 2 2020

a) M(x) = A(x) - 2B(x) + C(x)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2(x5 - 2x4 + x2 - 5x + 3) + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2x5 - 4x4 - 2x2 + 10x - 6 + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = (2x5 - 2x5) + (-4x3 + 4x3) + (x2 - 2x2 + 3x2) + (-2x + 10x - 8x) + (2 - 6 + \(4\frac{3}{16}\))

\(\Leftrightarrow\)M(x) = 2x2 + \(\frac{3}{16}\)

b) Thay \(x=-\sqrt{0,25}\)vào M(x), ta được:

\(M\left(x\right)=2\left(-\sqrt{0,25}\right)^2+\frac{3}{16}\)

\(M\left(x\right)=2.0,25+\frac{3}{16}\)

\(M\left(x\right)=0,5+\frac{3}{16}\)

\(M\left(x\right)=\frac{11}{16}\)

c) Ta có : \(x^2\ge0\)

\(\Leftrightarrow2x^2+\frac{3}{16}\ge\frac{3}{16}\)

Vậy để \(M\left(x\right)=0\Leftrightarrow x\in\varnothing\)

Bài 3: 

a: \(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)

b: \(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)

Bài 2: 

\(A+B=4x^4-5xy+5y^2+3x^2+2xy-y=4x^4+3x^2-3xy+5y^2-y\)

\(A-B=4x^4-5xy+5y^2-3x^2-2xy+y=4x^4-3x^2+5y^2-7xy+y\)

\(B-A=-\left(A-B\right)=-4x^4+3x^2-5y^2+7xy-y\)

a: M+N-P

\(=7a^2-2a+1-a^2+4\)

\(=6a^2-2a+5\)

b: \(=2y-x-2x+y+y+3x-5y+x\)

\(=-3x+3y-4y+4x=x-y\)

\(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\)

c: \(=\left[{}\begin{matrix}5x-3-2x+1=3x-2\left(x>=\dfrac{1}{2}\right)\\5x-3+2x-1=7x-4\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

6 tháng 3 2019

1. a)

\(h\left(0\right)=1+0+0+....+0=1\)

\(h\left(1\right)=1+\left(1+1+....+1\right)\)

( x thừa số 1)

\(=x+1\)

Với x là số chẵn

\(h\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{x-1}+\left(-1\right)^x=1-1+1-1+...-1+1-1=-1\)

Với x là số lẻ

\(h\left(-1\right)=1-1+1-1+1-....+1-1\) =0

b) Tương tự