Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x+\dfrac{3}{5}=\dfrac{4}{7}\)
\(x=\dfrac{4}{7}-\dfrac{3}{5}\)
\(x=-\dfrac{1}{35}\)
Vậy ....
b/ \(x-\dfrac{5}{6}=\dfrac{1}{6}\)
\(x=\dfrac{1}{6}+\dfrac{5}{6}\)
\(x=1\)
Vậy ....
c/\(-\dfrac{5}{7}-x=\dfrac{-9}{10}\)
\(x=\dfrac{-5}{7}-\dfrac{-9}{10}\)
\(x=\dfrac{13}{70}\)
Vậy .....
d/ \(\dfrac{5}{7}-x=10\)
\(x=\dfrac{5}{7}-10\)
\(x=\dfrac{-65}{7}\)
Vậy ...
e/ \(x:\left(\dfrac{1}{9}-\dfrac{2}{5}\right)=\dfrac{-1}{2}\)
\(x:\dfrac{-13}{45}=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}.\dfrac{-13}{45}\)
\(x=\dfrac{13}{90}\)
Vậy ....
f/ \(\left(\dfrac{-3}{5}+1,25\right)x=\dfrac{1}{3}\)
\(0,65.x=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}:0,65\)
\(x=\dfrac{20}{39}\)
Vậy ....
g/ \(\dfrac{1}{3}x+\left(\dfrac{2}{3}-\dfrac{4}{9}\right)=\dfrac{-3}{4}\)
\(\dfrac{1}{3}x+\dfrac{2}{9}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}x=\dfrac{-35}{36}\)
\(\Leftrightarrow x=\dfrac{-35}{12}\)
Vậy ...
a) Theo bài ra ta có : \(x+y+z=49\)
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\\ =\dfrac{12x+12y+12z}{18+16+15}\\ =\dfrac{12\left(x+y+z\right)}{49}\\ =\dfrac{12\cdot49}{49}\\ =12\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{12x}{18}=12\Rightarrow12x=216\Rightarrow x=18\\\dfrac{12y}{16}=12\Rightarrow12y=192\Rightarrow y=16\\\dfrac{12z}{15}=12\Rightarrow12z=180\Rightarrow z=15\end{matrix}\right.\)
\(\text{Vậy }x=18\\ y=16\\ z=15\)
b) Theo bài ra ta có : \(2x+3y-z=50\)
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\\ \Rightarrow\dfrac{2\left(x-1\right)}{4}=\dfrac{3\left(y-2\right)}{9}=\dfrac{z-3}{4}\\ \Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{2x-2}{4}=\dfrac{3y-2}{9}=\dfrac{z-3}{4}=\\ \dfrac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\\ =\dfrac{2x-2+3y-6-z+3}{9}\\ =\dfrac{\left(2x+3y-z\right)-\left(2+6-3\right)}{9}\\ =\dfrac{50-5}{9}\\ =\dfrac{45}{9}\\ =5\\ \)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x-2}{4}=5\Rightarrow2x-2=20\Rightarrow2x=22\Rightarrow x=11\\\dfrac{3y-6}{9}=5\Rightarrow3y-6=45\Rightarrow3y=51\Rightarrow y=17\\\dfrac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\end{matrix}\right.\)
\(\text{Vậy }x=11\\ y=17\\ z=23\)
a)\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có;
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2}{9}=\dfrac{x-3y+42}{4-3.3+9.21}=\dfrac{62}{184}=\dfrac{31}{92}\)
=>x=...;y=....
Bài 7:
x/1=z/2 nên x/6=z/12
=>x/6=y/9=z/12
=>x/2=y/3=z/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)
=>x=6; y=9; z=12
\(a)3\dfrac{1}{2}.\dfrac{4}{49}-\left[2,\left(4\right):2\dfrac{5}{11}\right]:\left(\dfrac{-42}{5}\right)\)
\(=\dfrac{7}{2}.\dfrac{4}{49}-\dfrac{88}{27}:\left(\dfrac{-42}{7}\right)\)
\(=\dfrac{2}{7}-\dfrac{-220}{567}\)
\(=\dfrac{382}{567}\)
các phần con lại dễ nên bn tự lm đi nhé mk bn lắm
Chúc bạn học tốt!
a: =>x/3=-5/2
hay x=-15/2
b: \(\Leftrightarrow\dfrac{7}{3}:x=\dfrac{1}{5}-\dfrac{4}{9}=\dfrac{9-20}{45}=\dfrac{-11}{45}\)
\(\Leftrightarrow x=\dfrac{7}{3}:\dfrac{-11}{45}=\dfrac{7}{3}\cdot\dfrac{-45}{11}=\dfrac{-105}{11}\)
c: \(\Leftrightarrow x=\dfrac{-7}{2}\cdot2=-7\)
d: =>x/27=-1/3+2/9=2/9-3/9=-1/9=-3/27
=>x=-3
a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\) và \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)
=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)
=> x-1=0
=> x=1
\(|\frac{1}{2}x-3y+1|=0\)
=> \(\frac{1}{2}.1-3y+1=0\)
=> \(\frac{1}{2}-3y=-1\)
=> \(3y=\frac{1}{2}-\left(-1\right)\)
=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)
=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)
b) Có: \(x^2\le y;y^2\le z;z\le x\)
=> \(x^4\le y^2\) và \(y^2\le x\)
=> \(x^4\le x\)
=> \(x^4=x\)
=> \(x\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\); \(y^2\le z\)và \(z\le x\)
=> \(x^4\le z\le x\)
Mà \(x^4=x\)
=> \(x^4=x=z\)
=> \(z\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\)và \(y^2\le z\)
=> \(x^4\le y^2\le z\)
Mà \(x^4=x=z\)
=> \(x^4=y^2\)
=> \(y^2\in\left\{0;1\right\}\)
=> \(y\in\left\{0;1\right\}\)
c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)
=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)
\(=\frac{x+43}{6}\)
..........Chỗ này?! Có gì đó sai sai.........
Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi
d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)
=> \(ab^2c+abc^2=2+\left(-2\right)=0\)
=> \(abc\left(b+c\right)=0\)
Mà a;b;c là 3 số khác 0
=> \(abc\ne0\)
=> \(b+c=0\)
=> \(b=-c\)
\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)
=> \(abc\left(a+b-c\right)=0\)
Mà \(abc\ne0\)
=> \(a+b-c=0\)
\(a^2bc-abc^2=-4-\left(-2\right)=-2\)
=> \(abc\left(a-c\right)=-2\)
Mà \(abc\ne0\)
=>\(a-c=-2\)
Có \(a+b-c=0\)
=> \(\left(a-c\right)+b=0\)
=> \(-2+b=0\)
=> \(b=2\)
\(b=-c=2\)=> \(c=-2\)
=> \(a-\left(-2\right)=-2\)
=> \(a+2=-2\)
=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra -__-
Mỏi tay quáááá
Lời giải:
$(x+\frac{4}{9})^2\geq 0$ (do bình phương 1 số thì không âm)
$\frac{-49}{144}< 0$
Do đó: $(x+\frac{4}{9})^2> \frac{-49}{144}$ với mọi $x$ nên pt trên vô nghiệm.
Ta có: \(\left(x+\dfrac{4}{9}\right)^2=-\dfrac{49}{144}\)
mà \(\left(x+\dfrac{4}{9}\right)^2\ge0\forall x\)
nên \(x\in\varnothing\)