K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

(x-1)2+(x+1)2-2(x+3)(x-3)+15

=(x2-2x+1+x2+2x+1)-2(x2-9)+15

=2x2+2-2x2+18+15

=20+15

=35

20 tháng 8 2020

a) ( x - 1 )( x2 + x + 1 ) + x( x + 2 )( 2 - x ) = 5

<=> x3 - 1 - x( x + 2 )( x - 2 ) = 5 

<=> x3 - 1 - x( x2 - 4 ) = 5

<=> x3 - 1 - x3 + 4x = 5

<=> 4x - 1 = 5

<=> 4x = 6

<=> x = 6/4 = 3/2

b) 5x( x - 3 )2 - 5( x - 1 )3 + 15( x + 4 )( x - 4 ) = 5

<=> 5x( x2 - 6x + 9 ) - 5( x3 - 3x2 + 3x - 1 ) + 15( x2 - 16 ) = 5

<=> 5x3 - 30x2 + 45x - 5x3 + 15x2 - 15x + 5 + 15x2 - 240 = 5

<=> 30x - 235 = 5

<=> 30x = 240

<=> x = 8

20 tháng 8 2020

a,\(\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\)

\(< =>x^3-1+x\left(4-x^2\right)=5\)

\(< =>x^3-1+4x-x^3=5\)

\(< =>4x-1-5=0< =>4x-6=0< =>x=\frac{3}{2}\)

b, \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x+4\right)\left(x-4\right)=5\)

\(< =>5x\left(x^2-6x+9\right)-5\left(x^3-3x^2+3x-1\right)+15\left(x^2-16\right)=5\)

\(< =>5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-240=5\)

\(< =>\left(5x^3-5x^3\right)+\left(15x^2+15x^2-30x^2\right)+\left(45x-15x\right)+5-240=5\)

\(< =>30x-240=5-5=0< =>x=\frac{24}{3}=8\)

19 tháng 8 2020

a) 4( 18 - 5x ) - 12( 3x - 16 ) = 15( 2x - 16 ) - 6( x + 14 )

<=> 72 - 20x - 36x + 192 = 30x - 240 - 6x - 84

<=> -20x - 36x - 30x + 6x = -240 - 84 - 72 - 192

<=> -80x = -588

<=> x = -588/-80 = 147/20

b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 6

<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 6

<=> x2 + 5x + 6 - x2 - 3x + 10 = 6

<=> 2x + 16 = 6

<=> 2x = -10

<=> x = -5

c) -x( x + 3 ) + 2 = ( 4x + 1 )( x - 1 ) + 2x

<=> -x2 - 3x + 2 = 4x2 - 3x - 1 + 2x

<=> -x2 - 3x - 4x2 + 3x - 2x = -1 - 2

<=> -5x2 - 2x = -3

<=> -5x2 - 2x + 3 = 0

<=> -( 5x2 + 2x - 3 ) = 0

<=> -( 5x2 + 5x - 3x - 3 ) = 0

<=> -[ 5x( x + 1 ) - 3( x + 1 ) ] = 0

<=> -( x + 1 )( 5x - 3 ) = 0

<=> \(\orbr{\begin{cases}x+1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{5}\end{cases}}\)

d) ( 2x + 3 )( x - 3 ) - ( x - 3 )( x + 1 ) = ( 2 - x )( 3x + 1 ) + 3 

<=> 2x2 - 3x - 9 - ( x2 - 2x - 3 ) = -3x2 + 5x + 2 + 3

<=> 2x2 - 3x - 9 - x2 + 2x + 3 = -3x2 + 5x + 2 + 3

<=> 2x2 - 3x - x2 + 2x + 3x2 - 5x = 2 + 3 + 9 - 3

<=> 4x2 - 6x = 11

<=> 4x2 - 6x - 11 = 0

=> Vô nghiệm ( Lớp 8 chưa học nghiệm vô tỉ nên để vậy ) :))

19 tháng 8 2020

vẫn làm được nha quỳnh !

\(4x^2-6x-11=0\)

\(< =>\left(4x^2-6x+\frac{9}{4}\right)-13\frac{1}{4}=0\)

\(< =>\left(2x-\frac{3}{2}\right)^2=\frac{53}{4}\)

\(< =>\orbr{\begin{cases}2x-\frac{3}{2}=\frac{\sqrt{53}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{53}}{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}2x=\frac{3+\sqrt{53}}{2}\\2x=\frac{3-\sqrt{53}}{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{3+\sqrt{53}}{4}\\x=\frac{3-\sqrt{53}}{4}\end{cases}}\)

17 tháng 10 2015

câu 2 : (x-3)(x-1)(x+1)(x+3)+15

=(x^2-9)(x^2-1)+15

đặt y=x^2-5 ta có

(y-4)(y+4)+15=y^2-16+15=y^2-1=(y+1)(y-1)=(x^2-6)(x^2-4)=(x^2-6)(x-2)(x+2)

17 tháng 8 2017

:  1/ (x+1)(x+3)(x+5)(x+7) + 15 = [ (x+1)(x+7) ].[ (x+3)(x+5) ] + 15 

= (x² + 7x + x + 7).(x² + 5x + 3x + 15) + 15 

= (x² + 8x + 7).(x² + 8x + 15) + 15 

= (x² + 8x + 11 - 4)(x² + 8x + 11 + 4) + 15. Đặt x² + 8x + 11 = y (1) ta được. 

(t - 4)(t + 4) + 15 = t² - 16 + 15 = t² - 1 = (t+1)(t-1) (2). 

Thay (1) vào (2) ta được: đa thức trên được phân tích thành: 

(x² + 8x + 11 + 1)(x² + 8x + 11 - 1) = x² + 8x + 12)(x² + 8x + 10). 

Lưu ý: phương pháp này có tên là "Đặt ẩn phụ". 

2/ x^7 - x² - 1 = x^7 - x² - 1 + x - x = (x^7 - x) + (-x² + x - 1) 

= x(x^6 - 1) - (x² - x + 1) = x(x³ - 1)(x³ + 1) - (x² - x + 1) 

= (x^4 - x)(x + 1)(x² - x + 1) - (x² - x + 1) 

= (x² - x + 1).[ (x^4 - x)(x + 1) - 1 ] 

= (x² - x + 1).(x^5 + x^4 - x² - x - 1). 

3/ x^4 + 4y^4 = x^4 + 4y^4 + 4x²y² - 4x²y² 

= (x^4 + 4x²y² + 4y^4) - (2xy)² 

= (x² + 2y²)² - (2xy)² = [ (x² + 2y²) + (2xy) ].[ (x² + 2y²) - (2xy) ] 

= (x² + 2xy + 2y²).(x² - 2xy + 2y²) 

4/ x^5 + x + 1 = x^5 + x + 1 + x² - x² 

= (x^5 - x²) + (x² + x + 1) = x²(x³ - 1) + (x² + x + 1) 

= x²(x - 1)(x² + x + 1) + (x² + x + 1) = (x² + x + 1).[ x²(x - 1) + 1 ] 

= (x² + x + 1).(x³ - x² + 1). 

5/ x^5 + x - 1 = x^5 + x - 1 + x² - x² = (x^5 + x²) + (-x² + x - 1) 

= x²(x³ + 1) - (x² + x - 1) = x²(x + 1)(x² - x + 1) - (x² - x + 1) 

= (x² - x + 1).[ x²(x + 1) - 1 ] = (x² - x + 1).(x³ + x² - 1). 

6/ (x² + y² - z²)² - 4x²y² = (x² + y² - z²)² - (2xy)² 

= [ (x² + y² - z²) - 2xy ].[ (x² + y² - z²) + 2xy ] 

= [ x² + y² - z² - 2xy ].[ x² + y² - z² + 2xy ] 

= [ (x² - 2xy + y²) - z² ].[ (x² + 2xy + y²) - z² ] 

= [ (x - y)² - z² ].[ (x + y)² - z² ] = (x-y+z)(x-y-z)(x+y+z)(x+y-z). 

Mong bạn sẽ hiểu

17 tháng 8 2017

híc bài bạn cop mink làm đk hết rồi...

\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)

\(2x+8=15\)

\(2x=7\)

\(x=\frac{7}{2}\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)

\(\Leftrightarrow9x+7=17\)

\(\Leftrightarrow9x=10\)

\(\Leftrightarrow x=\frac{10}{9}\)

18 tháng 7 2021

a) (x + 2)(x2 - 2x + 4) - -x(x2 + 2) = 15

<=> x3 + 8 - x3 - 2x = 15

<=> 2x = -7

<=> x=  -7/2

Vậy S = {-7/2}

b) (x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 = 49

<=> x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x + 6 = 49

<=> 24x = 24

<=> x = 1

Vậy S = {1}

3 tháng 9 2018

Gợi ý:

a)  Đặt    \(t=x^2+x+1\)

b)  Đặt    \(t=x^2+8x+11\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt:   \(t=x^2+7x+11\)