
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


PT : \(\sqrt{x^3-5}-\sqrt[3]{x^3+8}=1\) ( ĐKXĐ : \(x\ge\sqrt[3]{5}\))
\(\Leftrightarrow x^3+8=\left(\sqrt{x^3-5}-1\right)^3\)
\(\Leftrightarrow x^3+8=\left(\sqrt{x^3-5}\right)^3-3.\left(x^3-5\right)+3\sqrt{x^3-5}-1\)
\(\Leftrightarrow\left(\sqrt{x^3-5}\right)^3-4\left(x^3-5\right)+3\sqrt{x^3-5}-14=0\)
Đặt \(y=\sqrt{x^3-5},y\ge0\), pt trở thành \(y^3-4y^2+3y-14=0\)
Tới đây bạn tự giải !
\(a=\sqrt{x^3-5};\text{ }b=\sqrt[3]{x^3+8}\)
\(\Rightarrow\hept{\begin{cases}a-b=1\\b^3-a^2=x^3+8-\left(x^3-5\right)=13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b+1\\b^3-\left(b+1\right)^2=13\text{ (1)}\end{cases}}\)
\(\left(1\right)\Leftrightarrow b^3-b^2-2b-14=0\)
Nghiệm xấu rồi.

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
ti le 3 canh la 3/4/5 (dinh li pytago)
2 canh goc vuong lan luot la
125 : 5 x 4 = 100
125 : 5 x 3 = 75

Bạn học lớp mấy rồi mà ko biết làm toán lớp mẫu giáo thế ?😁 ☺️ ☹️

Chu vi của bánh xe là:
70 x 3,14 = 219,8 (cm)
Khoảng cách từ nhà AN đến trường là:
984 x 219,8 = 216283,2 cm
Đáp số:...

x^2 + x - 2 = 0
<=> ( x^2 - x ) + ( 2x - 2 ) = 0
<=> x . ( x - 1 ) + 2 . ( x - 1 ) = 0
<=> ( x - 1 ) . ( x + 2 ) = 0
<=> x - 1 = 0 hoặc x + 2 = 0
<=> x = 1 hoặc x = -2
Vậy .......
Tk mk nha

a. \(\sqrt{-2x+3}\)
ĐKXĐ: x < 0
b. \(\sqrt{\dfrac{2}{x^2}}\)
ĐKXĐ: x \(\ne\) 0
c. \(\sqrt{\dfrac{4}{x+3}}\)
ĐKXĐ: x > -3
d. \(\sqrt{\dfrac{-5}{x^2+6}}\)
ĐKXĐ: x vô nghiệm
4. a. x2 - 7
= x2 - \(\left(\sqrt{7}\right)^2\)
= \(\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
b. x2 - \(2\sqrt{2}x\) + 2
= x2 - \(2\sqrt{2}x\) + \(\left(\sqrt{2}\right)^2\)
= (x - \(\sqrt{2}\))2
c. x2 + \(2\sqrt{13}x\) + 13
= x2 + \(2\sqrt{13}x\) + \(\left(\sqrt{13}\right)^2\)
= \(\left(x+\sqrt{13}\right)^2\)
mik trc đi
Nhố nhăng . Đây là lớp học toán online , ko phải nơi cho bạn kiếm gấu