Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: q = x4 + 2x3 + 5x2 + 4x + 4
q = (x4 + x3 + x2) + (x3 + x2 + x) + (3x2 + 3x + 3) + 1
q = x2(x2 + x + 1) + x(x2 + x + 1) + 3(x2 + x + 1) + 1
q = (x2 + x + 3)(x2 + x + 1) + 1
q = (x2 + x + 1 + 2)n + 1
q = (n + 2)n + 1
q = n2 + 2n + 1
a)\(x^2+7x+6\)
\(=x^2+6x+x+6\)
\(=x\left(x+6\right)+\left(x+6\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b)\(x^4+2016x^2+2015x+2016\)
\(=x^4+2016x^2+\left(2016x-x\right)+2016\)
\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
Bài 3:
Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)
Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)
\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)
1)
ĐKXĐ: x\(\ne\)3
ta có :
\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)
để biểu thức A có giá trị = 1
thì :\(\frac{x-3}{2}\)=1
=>x-3 =2
=>x=5(thoả mãn điều kiện xác định)
vậy để biểu thức A có giá trị = 1 thì x=5
1)
\(A=\frac{x^2-6x+9}{2x-6}\)
A xác định
\(\Leftrightarrow2x-6\ne0\)
\(\Leftrightarrow2x\ne6\)
\(\Leftrightarrow x\ne3\)
Để A = 1
\(\Leftrightarrow x^2-6x+9=2x-6\)
\(\Leftrightarrow x^2-6x-2x=-6-9\)
\(\Leftrightarrow x^2-8x=-15\)
\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)
1.
a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)
b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)
2.
a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)
b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ
3.
\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)
4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)
\(A\ge\frac{7}{4}\)
Vậy GTNN của A là 7/4
a) \(P=\dfrac{2x-4}{x^2-4x+4}-\dfrac{1}{x-2}=\dfrac{2\left(x-2\right)}{\left(x-2\right)^2}-\dfrac{1}{x-2}\)
\(=\dfrac{2x-4-\left(x-2\right)}{\left(x-2\right)^2}=\dfrac{x-2}{\left(x-2\right)^2}=\dfrac{1}{x-2}\)
ĐKXĐ: \(x\ne2\) nên với x = 2 thì P không được xác định
\(Q=\dfrac{3x+15}{x^2-9}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3x+15+x-3-2\left(x+3\right)}{x^2-9}=\dfrac{2x+6}{x^2-9}=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{2}{x-3}\)
Tại x = 2 thì \(Q=\dfrac{2}{2-3}=\dfrac{2}{-1}=-2\)
b) Để P < 0 tức \(\dfrac{1}{x-2}< 0\) mà tứ là 1 > 0
nên để P < 0 thì x - 2 < 0 \(\Leftrightarrow x< 2\)
Vậy x < 2 thì P < 0
c) Để Q nguyên tức \(\dfrac{2}{x-3}\) phải nguyên
mà \(\dfrac{2}{x-3}\) nguyên khi x - 3 \(\inƯ_{\left(2\right)}\)
hay x - 3 \(\in\left\{-2;-1;1;2\right\}\)
Lập bảng :
x - 3 -1 -2 1 2
x 2 1 4 5
Vậy x = \(\left\{1;2;4;5\right\}\) thì Q đạt giá trị nguyên
a) \(\dfrac{20x^3}{11y^2}.\dfrac{55y^5}{15x}=\dfrac{20.5.11.x.x^2.y^2.y^3}{11.3.5.x.y^2}=\dfrac{20x^2y^3}{3}\)
b) \(\dfrac{5x-2}{2xy}-\dfrac{7x-4}{2xy}=\dfrac{5x-2-7x+4}{2xy}=\dfrac{-2x+2}{2xy}=\dfrac{2\left(1-x\right)}{2xy}=\dfrac{1-x}{xy}\)
\(A=x^4+2x^3+x^2+4x^2+4x+4\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)+4\)
\(=\left(x^2+x+2\right)^2\)
\(=\left(x^2+x+1+1\right)^2\)
\(=\left(a+1\right)^2\)
cảm ơn bạn