Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\left(x-4\right)\left(6-x\right)\le\left(\frac{x-4+6-x}{2}\right)^2=1\) (bất đẳng thức cauchy)
mà \(\left|y+1\right|\ge0\Rightarrow\left|y+1\right|+2\ge2>1\)
Vậy phương trình trên vô nghiệm
x A B C y z
kẻ Bz // Cy và Ax
TA CÓ ^xAB trong cùng phía với ^ABz mà Ax // Bz => ^xAB + ^ABz = 180 => ^ABz = 115
có Cy // Bz mà yCB trong cùng phía CBz => yCB + CBz = 180 => ^CBz = 50
có ^CBz + ^ABC = ^ABz
=> ^ABC = 65
ta có : \(\left(x-2\right)\left(5-x\right)\le\left(\frac{x-2+5-x}{2}\right)^2=\frac{9}{4}\)
mà vế trái \(\left|y-1\right|+1\ge1\Rightarrow\orbr{\begin{cases}\left(x-2\right)\left(5-x\right)=2\\\left(x-2\right)\left(5-x\right)=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-7x+12=0\\x^2-7x+11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
khi đó \(\left|y-1\right|+1=2\Leftrightarrow\left|y-1\right|=1\Leftrightarrow\orbr{\begin{cases}y-1=1\\y-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=2\\y=0\end{cases}}\)
Vậy ta có x bằng 3 hoặc 4 và y bằng 0 hoặc 2
các câu khác hoàn toàn tương tự nhé
cho mình hỏi là ở chỗ ta có thì \(\frac{9}{4}\)là ở đâu ak
Kẻ tia \(Bz//Ax\Rightarrow Bz//Cy\).
Vì \(Bz//Ax\)nên \(\widehat{BAx}+\widehat{ABz}=180^o\)(hai góc trong cùng phía)
\(\Leftrightarrow\widehat{ABz}=180^o-\widehat{BAx}=180^o-110^o=70^o\)
Tương tự xét \(Bz//Cy\)cũng suy ra được \(\widehat{BCz}=180^o-\widehat{BCy}=180^o-120^o=60^o\)
\(\widehat{ABC}=\widehat{ABz}+\widehat{CBz}=70^o+60^o=130^o\)
ta có \(2\left|y+1\right|=6-\left|x-3\right|\)
Do vế trái là số chẵn và không âm nên vế phải cũng là số chẵn không âm
nên : \(\hept{\begin{cases}\left|x-3\right|\text{ chẵn}\\\left|x-3\right|\le6\end{cases}}\Rightarrow\left|x-3\right|=0,2,4,6\)
\(\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\\orbr{\begin{cases}y=2\\y=-4\end{cases}}\end{cases}}}\)TH1\(\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\text{ hoặc }\hept{\begin{cases}x=3\\y=-4\end{cases}}}}\)
TH2: \(\hept{\begin{cases}\left|x-3\right|=2\\\left|y+1\right|=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}\text{ hoặc }\hept{\begin{cases}x=1\\y=-3\end{cases}}\text{ hoặc }\hept{\begin{cases}x=5\\y=1\end{cases}}\text{ hoặc }\hept{\begin{cases}x=5\\y=-3\end{cases}}}}\)
TH3: \(\hept{\begin{cases}\left|x-3\right|=4\\\left|y+1\right|=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=0\end{cases}\text{ hoặc }\hept{\begin{cases}x=7\\y=-2\end{cases}}\text{ hoặc }\hept{\begin{cases}x=-1\\y=0\end{cases}}\text{ hoặc }\hept{\begin{cases}x=-1\\y=-2\end{cases}}}}\)
TH4: \(\hept{\begin{cases}\left|x-3\right|=6\\\left|y+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=-1\end{cases}\text{ hoặc }\hept{\begin{cases}x=-3\\y=-1\end{cases}}}}\)
\(\sqrt{12}\)