Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|=\left(\sqrt{3}+\sqrt{2}\right)-\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|-\left|\sqrt{5}+\sqrt{2}\right|=\left(\sqrt{5}-\sqrt{2}\right)-\left(\sqrt{5}+\sqrt{2}\right)\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}=-2\sqrt{2}\)
c) \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|=\left(\sqrt{3}-1\right)+\left(\sqrt{3}+1\right)\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
d) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=2\sqrt{6+2\sqrt{5}}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=2\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{5}-2=2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
a. \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
= \(3-\sqrt{6} +2\sqrt{6}-3\) = \(\sqrt{6}\)
b. \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
= \(\sqrt{8\sqrt{3}}-2.5\sqrt{12}+4\sqrt{8\sqrt{3}}\)
= \(5\sqrt{8\sqrt{3}}-5\sqrt{4.\sqrt{12}}=5\sqrt{8\sqrt{3}}-5\sqrt{4.2\sqrt{3}}\)
= \(5\sqrt{8\sqrt{3}}-5\sqrt{8\sqrt{3}}=0\)
c. \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\) = \(\sqrt{2}.\sqrt{2-\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}.\left(\sqrt{3}+1\right)\)
=\(\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)
= 3 - 1 = 2
d. \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
= \(\dfrac{\sqrt{2}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)}{\sqrt{2}}=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
= \(\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\) = \(\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}\)
= \(\dfrac{2\sqrt{5}}{\sqrt{2}}\)= \(\sqrt{10}\)
e. \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)+\left(\sqrt{2}-1\right)^2\right)\)\(2.\left(3+2\sqrt{2}+2-1+3-2\sqrt{2}\right)=2.7=14\)
a: \(D=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(E=\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)
\(=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=18+6\sqrt{5}-6\sqrt{5}-10=8\)
1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)
2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)
3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2}
\)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)
4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)
5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)
7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)
8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2
1. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}\)
1: \(=\sqrt{36}=6\)
2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)
3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)
4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)
đk : \(x\ne4\) ; \(x\ge0\)
1) a) Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\)
Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{4-x}\)
Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
Q = \(\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
Q = \(\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
Q = \(\dfrac{6-3\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\) = \(\dfrac{3\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
Q = \(\dfrac{3}{2+\sqrt{x}}\)
b) ta có Q = \(\dfrac{6}{5}\) \(\Leftrightarrow\) \(\dfrac{3}{2+\sqrt{x}}\) = \(\dfrac{6}{5}\) \(\Leftrightarrow\) \(\dfrac{6}{4+2\sqrt{x}}\) = \(\dfrac{6}{5}\)
\(\Leftrightarrow\) \(4+2\sqrt{x}=5\) \(\Leftrightarrow\) \(2\sqrt{x}=1\) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{1}{2}\) \(\Leftrightarrow\) \(x=\dfrac{1}{4}\)
c) điều x nguyên ; x \(\ge\) 0 ; x\(\ne\) 4
ta có Q nguyên \(\Leftrightarrow\) \(\dfrac{3}{2+\sqrt{x}}\) nguyên
\(\Rightarrow\) \(2+\sqrt{x}\) là ước của 3 là 3 ; 1 ; -1 ; -3
mà \(2+\sqrt{x}\ge2\) (đk :\(x\ge0\)) vậy còn lại 3
\(\Leftrightarrow\) \(2+\sqrt{x}=3\) \(\Leftrightarrow\) x = 1 (tmđk)
vậy x = 1 nguyên thì Q nguyên
2) a) \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\) = \(4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}\)
= \(4\sqrt{a}-5\sqrt{10a}\)
b) \(\left(2\sqrt{3}+5\right)\sqrt{3}-\sqrt{60}\) = \(6+5\sqrt{3}-\sqrt{60}\)
c) \(\left(\sqrt{99}-\sqrt{8}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
= \(33-2\sqrt{22}-11+3\sqrt{22}\)
= \(22+\sqrt{22}\)
\(1,\left(2+\sqrt{3}\right)\left(7-4\sqrt{3}\right)\\ =14-8\sqrt{3}+7\sqrt{3}-12\\ =2-\sqrt{3}\\ 2,\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\sqrt{3}\\ =\left(\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{2}\right)\sqrt{3}\\ =\left(\left|\sqrt{3}-\sqrt{2}\right|+\sqrt{2}\right)\sqrt{3}\\ =\left(\sqrt{3}-\sqrt{2}+\sqrt{2}\right)\sqrt{3}\\ =\sqrt{3}.\sqrt{3}\\ =3\\ 3,\sqrt{4+2\sqrt{3}}-\sqrt{5-2\sqrt{6}}+\sqrt{2}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{2}\\ =\left|\sqrt{3}+1\right|-\left|\sqrt{3}-\sqrt{2}\right|+\sqrt{2}\\ =\sqrt{3}+1-\sqrt{3}-\sqrt{2}+\sqrt{2}\\ =1\\ 4,\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\\ =\sqrt{\left(1+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}\\ =\left|1+\sqrt{2}\right|+\left|\sqrt{4}-\sqrt{2}\right|\\ =1+\sqrt{2}+\sqrt{4}-\sqrt{2}\\ =1+\sqrt{4}\\ 5,2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\\ =2+\sqrt{17-8-4\sqrt{5}}\\ =2+\sqrt{\left(\sqrt{5}-2\right)^2}\\ =2+\left|\sqrt{5}-2\right|\\ =2+\sqrt{5}-2\\ =\sqrt{5}\)