BC2BC2) cắt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

ΔBDC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có 

ΔBEC nội tiếp đường tròn

BC là đường kính

Do đó:ΔBEC vuông tại E

b: Xét tứ giác ADHE có 

\(\widehat{ADH}+\widehat{AEH}=180^0\)

Do đó: ADHE là tứ giác nội tiếp

hay A,D,H,E cùng thuộc 1 đường tròn

a: Xét (O) có 

ΔBDC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có 

ΔBEC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBEC vuông tại E

b: Xét tứ giác ADHE có 

\(\widehat{ADH}+\widehat{AEH}=180^0\)

Do đó: ADHE là tứ giác nội tiếp

2 tháng 9 2021

bạn vẽ hình giúp mh đc ko ạ

a: Xét (O) có 

ΔBDC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có 

ΔBEC nội tiếp đường tròn

BC là đường kính

Do đó:ΔBEC vuông tại E

b: Xét tứ giác ADHE có 

\(\widehat{ADH}+\widehat{AEH}=180^0\)

Do đó: ADHE là tứ giác nội tiếp

hay A,D,H,E cùng thuộc 1 đường tròn

a: Xét (O) có 

ΔBEC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBEC vuông tại E

hay BE\(\perp\)AC

Xét (O) có 

ΔBDC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBDC vuông tại D

hay CD\(\perp\)AB

b: Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=180^0\)

Do đó: ADHE là tứ giác nội tiếp

hay A,D,H,E cùng thuộc 1 đường tròn

1 tháng 9 2021

Bạn vẽ hình giúp mình được không ạ

2 tháng 6 2017

? khó quá bn ơi !

mk ko bít

ko bít ko bít ko bít

chuk may mắn

29 tháng 11 2015

d)  \(\Delta\)HCM vuông tại C; I là trung điểm HM => \(\Delta\)MIC cân tại I => góc ICM = góc IMC (*)

 \(\Delta\)OAC cân tại O => OAC = góc OCA (**)

Mặt khác góc BAC = góc BMH ( cùng phụ với góc ABM) (***)

(*)(**)(***) => ICM = góc OCA

 => ICO = OCA + ACI = ICM + ACI = ACM = 90

CM tương tự trên

=> IDO =90

Gọi O' là trung điểm của OI => O' O=O'C=O'I=O'D =O'O/2

=> KL....

 

28 tháng 1 2019

A B C D E I S O

1) Xét đường tròn (O) đường kính CD => ^CED = 900 => ^DEB = 900

Xét tứ giác ADEB có: ^BAD + ^ DEB = 900 + 900 = 1800 => Tứ giác ADEB nội tiếp 

Hay 4 điểm A,D,E,B cùng thuộc một đường tròn (đpcm).

2) Tứ giác ADEB nội tiếp => ^DEA = ^DBA. Tương tự: ^DEI = ^DCI

Ta có: Tứ giác ABCI nội tiếp của đường tròn đường kính BC (Do ^BAC = ^BIC = 900)

=> ^DBA = ^DCI. Từ đó, suy ra: ^DEA = ^DEI => ED là phân giác ^AEI (đpcm).

3) Dễ thấy DE, CI, BA là 3 đường cao của \(\Delta\)BCD nên AB,CI,DE đồng quy (tại trực tâm \(\Delta\)BCD) (đpcm).

4) Xét \(\Delta\)ABC có vuông tại A: \(\tan\widehat{ABC}=\frac{AC}{AB}=\sqrt{2}\Rightarrow AB=\frac{AC}{\sqrt{2}}\)(theo gt)

Để EA là tiếp tuyến của (CD) thì ^AED = ^DCE. Hay ^ABD = ^ACB (Vì ^AED=^ABD)

<=> \(\Delta\)ADB ~ \(\Delta\)ABC (g,g) <=> \(AB^2=AD.AC\) <=> \(\left(\frac{AC}{\sqrt{2}}\right)^2=AD.AC\)

<=> \(AD=\frac{AC}{2}\)<=> D là trung điểm cạnh AC.

Vậy D là trung điểm AC thì EA là tiếp tuyến của (CD).

14 tháng 5 2017

Câu a) b) mình làm được rồi giúp mình câu c) d) thui nhanh nhanh chút nha mifnk sắp đi học rùi