Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
ĐK: $x\geq \frac{2}{3}$
Đặt $\sqrt{4x+1}=a; \sqrt{3x-2}=b(a,b\geq 0)$
PT trở thành:
$a-b=a^2-b^2$
$\Leftrightarrow (a-b)(a+b)-(a-b)=0$
$\Leftrightarrow (a-b)(a+b-1)=0$
Nếu $a-b=0\Leftrightarrow 4x+1=3x-2\Leftrightarrow x=-3$ (loại vì không thỏa ĐKXĐ)
Nếu $a+b-1=0$
$\Leftrightarrow b=1-a$
$\Leftrightarrow \sqrt{3x-2}=1-\sqrt{4x+1}$
$\Rightarrow 3x-2=4x+2-2\sqrt{4x+1}$
$\Leftrightarrow x+4=2\sqrt{4x+1}$
$\Rightarrow (x+4)^2=4(4x+1)$
$\Leftrightarrow x^2-8x+12=0\Leftrightarrow x=6$ hoặc $x=2$
Vậy.......
Bài 5:
ĐK: $x\geq -2$
PT $\Leftrightarrow 3\sqrt{(x+2)(x^2-2x+4)}=2x^2-3x+10$
Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$
Khi đó PT trở thành:
$3ab=2b^2+a^2$
$\Leftrightarrow a^2-3ab+2b^2=0$
$\Leftrightarrow a(a-b)-2b(a-b)=0$
$\Leftrightarrow (a-b)(a-2b)=0$
Nếu $a-b=0\Rightarrow a^2-b^2=0$
$\Leftrightarrow x+2-(x^2-2x+4)=0$
$\Leftrightarrow x^2-3x+2=0\Rightarrow x=1$ hoặc $x=2$ (thỏa mãn)
Nếu $a-2b=0\Rightarrow 4b^2-a^2=0$
$\Leftrightarrow 4(x^2-2x+4)-(x+2)=0$
$\Leftrightarrow 4x^2-9x+14=0$ (pt vô nghiệm)
Vậy.........
P(x) chia hết cho x-2 cần P(2)-0 nên thay x=2 vào P(x) được: P(x)=2^4-5.2^3-4.x^2+3.2+m=m-34=0 =>m=34
tương tự tìm n=-40
4x3 - 13x2 + 9x - 18
= 4x3 - 12x2 - x2 + 3x + 6x - 18
= 4x2(x - 3) - x(x - 3) + 6(x - 3)
= (x - 3)(4x2 - x + 6)
x2 + 5x - 6
= x2 + 2x + 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
x3 + 8x2 + 17x + 10
= x3 + x2 + 7x2 + 7x + 10x + 10
= x2(x + 1) + 7x(x + 1) + 10(x + 1)
= (x + 1)(x2 + 7x + 10)
= (x + 1)(x2 + 5x + 2x + 10)
= (x + 1)[ x(x + 5) + 2(x + 5)]
= (x + 1)(x + 5)(x + 2)
x3 + 3x2 + 6x + 4
= x3 + 3x2 + 3x + 1 + 3x + 3
= (x + 1)3 + 3(x + 1)
= (x + 1)[(x + 1)2 + 3]
= (x + 1)(x2 + 2x + 1 + 3)
= (x + 1)(x2 + 2x + 4)
2x3 - 12x2 + 17x - 2
= 2x3 - 8x2 - 4x2 + x + 16x - 2
= (2x3 - 8x2 + x) - (4x2 - 16x + 2)
= x(2x2 - 8x + 1) - 2(2x2 - 8x + 1)
= (2x2 - 8x + 1)(x - 2)
\(x^4-2x^3+3x^2-4x+3=0\)
\(\Leftrightarrow x^4-4x^3+6x^2-4x+1+2x^3-6x^2+6x-2+3x^2-6x+3+1=0\)
\(\Leftrightarrow\left(x-1\right)^4+2\left(x^3-3x^2+3x-1\right)+3\left(x^2-2x+1\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2+1=0\)
Dê thấy: \(\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2+1>0\) (
Hay pt vô nghiệm
c/
\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\)
\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x=4\\x^2+3x=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\)
d/
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x-10=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x^2-x\right)-10=0\)
Đặt \(x^2-x=t\)
\(t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\end{matrix}\right.\)
a/ ĐKXĐ: ...
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(2\left(t^2-2\right)-3t+2=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1=0\\2x^2-x+2=0\end{matrix}\right.\)
b/ Với \(x=0\) ko phải nghiệm
Với \(x\ne0\) chia 2 vế của pt cho \(x^2\)
\(x^2+\frac{1}{x^2}-5x+\frac{5}{x}-8=0\)
\(\Leftrightarrow x^2+\frac{1}{x^2}-2-5\left(x-\frac{1}{x}\right)-6=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}-2\)
\(t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-1\\x-\frac{1}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-6x-1=0\end{matrix}\right.\)
x^4 + 2x^3 - 3x^2 - 4x + 10
= x^4 + 2x^3 - 3x^2 - 4x + 4 + 6
= (x2 + x - 2)2 + 6
= (x - 1)2(x + 2)2 + 6 \(\ge\)6
Dấu "=" xảy ra <=> x = 1 hoặc x = -2