K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

 Ta có x+y=6 (theo bài ra)

min a = x + 5 + y + 1 = x + y + 5 + 1 = 6 + 5 + 1 = 12

23 tháng 1 2017

mk ko biết, nhìn hoi phức tạp nhỉ

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

16 tháng 8 2016

Câu 1:

a)A=|x+1|+2016

       Vì |x+1|\(\ge\)0

           Suy ra:|x+1|+2016\(\ge\)2016

     Dấu = xảy ra khi x+1=0

                                x=-1

 Vậy MinA=2016 khi x=-1

b)B=2017-|2x-\(\frac{1}{3}\)|

       Vì -|2x-\(\frac{1}{3}\)|\(\le\)0

             Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017

    Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)

                               \(2x=\frac{1}{3}\)

                                \(x=\frac{1}{6}\)

Vậy Max B=2017 khi \(x=\frac{1}{6}\)

c)C=|x+1|+|y+2|+2016

         Vì |x+1|\(\ge\)0

              |y+2|\(\ge\)0

     Suy ra:|x+1|+|y+2|+2016\(\ge\)2016

                Dấu = xảy ra khi x+1=0;x=-1

                                           y+2=0;y=-2

Vậy MinC=2016 khi x=-1;y=-1

d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10

      =10-|x+\(\frac{1}{2}\)|-|y-1|

             Vì      -|x+\(\frac{1}{2}\)|\(\le\)0

                         -|y-1|  \(\le\)0

    Suy ra:      10-|x+\(\frac{1}{2}\)|-|y-1|    \(\le\)10

Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)

                           y-1=0;y=1

          Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1           



 

16 tháng 8 2016

Bài 1:

a)Ta thấy: \(\left|x+1\right|\ge0\)

\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)

\(\Rightarrow A\ge2016\)

Dấu = khi x=-1

Vậy MinA=2016 khi x=-1

b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)

\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)

\(\Rightarrow B\le2017\)

Dấu = khi x=1/6

Vậy Bmin=2017 khi x=1/6

c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)

\(\Rightarrow D\ge2016\)

Dấu = khi x=-1 và y=-2

Vậy MinD=2016 khi x=-1 và y=-2

d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)

\(\Rightarrow D\le10\)

Dấu = khi x=-1/2 và y=1

Vậy MaxD=10 khi x=-1/2 và y=1

6 tháng 1 2019

a) \(A=\left(x-1\right)^2+\left(y+3\right)^2+2010\)

Vì \(\left(x-1\right)^2\ge0\forall x;\left(y+3\right)^2\ge0\forall y\)

\(\Rightarrow A\ge2010\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)

Vậy Amin = 2010 <=> x = 1; y = -3

b) tương tự

a, Nhận xét : \(\left(x-1\right)^2\ge0\text{ với}\forall x\)

                    \(\left(y+3\right)^2\ge0\text{ với}\forall y\)

=> \(\left(x-1\right)^2+\left(y+3\right)^2\ge0\text{ với}\forall x,y\)

=> \(\left(x-1\right)^2+\left(y+3\right)^2+2010\ge2010\)

=> Dấu "=" xảy ra  \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

=> \(A_{min}=2010\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

26 tháng 6 2017

1a, 15-/2x-1/=8

=>/2x-1/=15-8 =7

=> 2x-1 =8 hoặc 2x-1=-8

=>2x =8+1=9 hoặc 2x=-8+1 =-7

=> x = 9:2 =4,5 hoặc 2x = (-7):2 = -3,5

vậy..........

26 tháng 6 2017

1b, /x+2/ +/5-2y/ =0

=> /x+2/=0và /5-2y/ =0

=> x=2 và 2y =5

=>x=2 và y=2,5

vậy....................

27 tháng 2 2018

b/
\(\dfrac{x+y-6}{z}=\dfrac{x+z+4}{y}=\dfrac{y+z+2}{x}=\dfrac{6}{x+y+z}\)
Đặt 0\(k=\dfrac{x+y-6}{z}=\dfrac{x+z+4}{y}=\dfrac{y+z+2}{x}=\dfrac{6}{x+y+z}\)
\(\Rightarrow k=\dfrac{\left(x+y-6\right)+\left(x+z+4\right)+\left(y+z+2\right)}{z+y+x}\)
\(\Rightarrow k=\dfrac{2x+2y+2z-6+4+2}{z+y+x}\)
\(\Rightarrow k=\dfrac{2\left(x+y+z\right)}{z+y+x}\)
\(\Rightarrow k=2\) (*)
Từ (*)
\(\Rightarrow\dfrac{x+y-6}{z}=2\Rightarrow x+y-6=2z\)
\(\Rightarrow\dfrac{x+z+4}{y}=2\Rightarrow x+z+4=2y\)
\(\Rightarrow\dfrac{y+z+2}{x}=2\Rightarrow y+z+2=2x\)
\(\Rightarrow\dfrac{6}{x+y+z}=2\Rightarrow\dfrac{6}{2}=x+y+z\)
\(\Rightarrow x+y+z=3\)
Thay vào biểu thức x+y+z = 3
\(\Rightarrow\dfrac{3-z-6}{z}=\dfrac{3-y+4}{y}=\dfrac{3-x+2}{x}=2\)
\(\Rightarrow\dfrac{-3-z}{z}=\dfrac{7-y}{y}=\dfrac{5-x}{x}=2\)
\(\text{Ta có :}\dfrac{-3-z}{z}=2\)
\(\Rightarrow-3-z=2z\)
\(\Rightarrow-3=3z\)
\(\Rightarrow z=-1\)
*) \(\dfrac{7-y}{y}=2\)
\(\Rightarrow7-y=2y\)
\(\Rightarrow7=3y\)
\(\Rightarrow y=\dfrac{7}{3}\)
*)\(\dfrac{5-x}{x}=2\)
\(\Rightarrow5-x=2x\)
\(\Rightarrow5=3x\)
\(\Rightarrow x=\dfrac{5}{3}\)
Vậy x = 5/3 ; y = 7/3 ; z = -1



13 tháng 9 2021

Theo đề ra, ta có: \(\frac{x-1}{y+2}=\frac{3}{5}\)

\(\Rightarrow\frac{x-1}{3}=\frac{y+2}{5}=\frac{x-1+y+2}{8}=\frac{23-1+2}{8}=\frac{24}{8}=3\)

\(\frac{x-1}{3}=3\Rightarrow x=3.3+1=10\)

\(\frac{y+2}{5}=3\Rightarrow y=5.3-2=13\)