Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
d, Ta có : \(\frac{x^3+4x^2-x-4}{x+4}\)
\(=\frac{x^2\left(x+4\right)-\left(x+4\right)}{x+4}=\frac{\left(x^2-1\right)\left(x+4\right)}{x+4}=x^2-1\)
- Thay \(x=-2\frac{1}{3}\) vào biểu thức trên ta được :
\(\left(-2\frac{1}{3}\right)^2-1=\frac{58}{9}\)
Vậy biểu thức có giá trị là \(\frac{58}{9}\) tại \(x=-2\frac{1}{3}\)
a)
\(x+2y=5\Leftrightarrow x=5-2y\)
Thay vào ta được
\(M=\left(5-2y\right)^2+2y^2=25-20y+4y^2+y^2=6y^2-20y+25=6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{25}{3}=6\left(y-\frac{5}{3}\right)^2+\frac{25}{3}\)
Mà \(6\left(y-\frac{5}{3}\right)^2\ge0\forall y\Leftrightarrow6\left(y-\frac{5}{3}\right)^2+\frac{25}{3}\ge\frac{25}{3}\)
Dấu '' = '' xảy ra \(\Leftrightarrow y=\frac{5}{3}\)
\(\Rightarrow x=\frac{5}{3}\)
\(\Rightarrow MinM=\frac{25}{3}\Leftrightarrow x=y=\frac{5}{3}\)
=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0
còn lại thì e bó tay . canh
(x+2y)(x2-2xy+4y2)=0
<=>x3+(2y)3=0
<=>x3+8y3=0 (1)
(x-2y)(x2+2xy+4y2)=0
<=>x3-(2y)3=0
<=>x3-8y3=0 (2)
từ (1) và (2)=>x3+8y3-x3+8y3=0
<=>16y3=0
<=>y=0
thay y=0 vào (1) ta đc:
x3-0=0
<=>x3=0
<=>x=0