\(11 ⋮n-2 \)            \(\left(n+7\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
18 tháng 8 2023

Bổ sung đề : Tìm n thuộc Z

+) \(11⋮\left(n-2\right)=>n-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ =>n\in\left\{3;1;13;-9\right\}\)

+) \(\left(n+7\right)⋮\left(n-3\right)\\ =>\left(n-3\right)+10⋮\left(n-3\right)\\ =>10⋮\left(n-3\right)\\ =>n-3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\\ =>n\in\left\{4;2;5;1;8;-2;13;-7\right\}\)

 

17 tháng 10 2018

Neu n la so chan thi n(n+3) chia het cho 2

Neu n la so le thi n+3 la so chan (vi le +le = chan)

                           => n(n+3) chia het cho 2

vay n(n+3) chia het cho 2 voi moi n la stn

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

17 tháng 10 2018

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

15 tháng 6 2017

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137
12 tháng 7 2018

a, Ta có : \(7^6+7^5-7^4\)

\(=7^4.7^2+7^4.7+7^4.1=7^4.49+7^4.7+7^4.1\)

\(=7^4.\left(49+7-1\right)\)

\(=7^4.55\) \(⋮\) \(55\) (vì \(55⋮55\))

Vậy \(7^6+7^5-7^4⋮55\)

b, Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.2.5-2^{n-1}.2.5\)

\(=2.5.\left(3^n-2^{n-1}\right)\) chia hết cho 2 và 5( vì \(2⋮2\) ; \(5⋮5\) )

Vậy \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 2 và 5

13 tháng 7 2018

ko có gì đâu

10 tháng 2 2019

a, (n + 5)2 - 3(n + 5) + 2 ⋮ n + 5

=> (n+5)(n+5-3) + 2 ⋮ n + 5

=> 2 ⋮ n + 5

=> n + 5 thuộc Ư(2) = {-1; 1; -2; 2}

=> n thuộc {-6; -4; -7; -3}

19 tháng 10 2017

k;

k;ụkh

jk

hk

k

gh

khk

19 tháng 10 2017

\(a.x^{10}=x\)

\(=>x=1\)

DD
11 tháng 3 2022

1) \(\left(3x+5y\right)\left(x+4y\right)⋮7\)

\(\Leftrightarrow\orbr{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Ta có: \(\left(3x+5y\right)⋮7\Leftrightarrow5\left(3x+5y\right)=15x+25y=\left(x+4y\right)+2.7x+3.7y⋮7\)

\(\Leftrightarrow\left(x+4y\right)⋮7\)

Do đó \(\hept{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Suy ra \(\left(3x+5y\right)\left(x+4y\right)⋮\left(7.7\right)\Leftrightarrow\left(3x+5y\right)\left(x+4y\right)⋮49\)(ta có đpcm) 

DD
11 tháng 3 2022

2) \(n^3-n=n\left(n^2-1\right)=n\left(n^2-n+n-1\right)=n\left[n\left(n-1\right)+\left(n-1\right)\right]\)

\(=n\left(n-1\right)\left(n+1\right)\)

Có \(n\left(n-1\right)\left(n+1\right)\)là tích của ba số nguyên liên tiếp mà trong ba số \(n-1,n,n+1\)có ít nhất một số chia hết cho \(2\), một số chia hết cho \(3\). Kết hợp với \(\left(2,3\right)=1\)

Suy ra \(n\left(n-1\right)\left(n+1\right)\)chia hết cho \(2.3=6\).