\(\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{2-3\sqrt{x}}{x-3\sqrt{x}-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

a) Điều kiện xác định : \(x\ge0;x\ne1\)

\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{\left(\sqrt{x}-1\right)\left(7-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}\)

b) Ta có : \(P=\frac{7-3\sqrt{x}}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=\frac{19}{\sqrt{x}+4}-3>-3\)

c) Theo b) :   \(P=\frac{19}{\sqrt{x}+4}-3\)

Ta có : \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+4\ge4\Leftrightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\Leftrightarrow\frac{19}{\sqrt{x}+4}-3\le\frac{7}{4}\)

\(\Rightarrow P\le\frac{7}{4}\) . Dấu "=" xảy ra khi x = 0

Vậy P đạt giá trị lớn nhất bằng \(\frac{7}{4}\) , khi x = 0

 

 

 

NM
18 tháng 10 2021

ta có :

undefined

19 tháng 10 2021

Cho mình hỏi câu a của bạn phân số đầu tiên bạn vứt mất x ở mẫu của mik đâu rồi

12 tháng 10 2018

các bạn giúp đi,mk kick cho

25 tháng 7 2020

câu c: x = 9 không tmđk ạ, cảm ơn cậu đã trả lời

25 tháng 7 2020

câu a rút gọn sai rồi ạ

6 tháng 7 2016

1)\(M=\frac{x-7}{x-4\sqrt{x}+3}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-3}\)(ĐKXĐ : \(x\ge0;x\ne1;x\ne9\))

\(=\frac{x-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-1}\)

2) \(M>\frac{3}{4}\Leftrightarrow\frac{\sqrt{x}+3}{\sqrt{x}-1}>\frac{3}{4}\Leftrightarrow1+\frac{4}{\sqrt{x}-1}-\frac{3}{4}>0\Leftrightarrow\frac{4}{\sqrt{x}-1}+\frac{1}{4}>0\Rightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)Vậy \(M>\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne9\end{cases}}\)