\(M=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}+\frac{1}{5^{2014}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 11 2019

\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}+\frac{1}{5^{2014}}\)

\(5M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)

\(\Rightarrow4M=1-\frac{1}{5^{2014}}< 1\)

\(\Rightarrow M< \frac{1}{4}< \frac{1}{3}\)

9 tháng 4 2019

em thử nhân S với 5 rồi lấy 5S= S thử đi

chị làm toàn như vậy

ko bt có đc ko nữa

11 tháng 12 2017

\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{49}+\left(\frac{1}{5}\right)^{50}\)

\(5M=1+\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{48}+\left(\frac{1}{5}\right)^{49}\)

5M - M = \(1-\left(\frac{1}{5}\right)^{50}\)hay 4M = \(1-\left(\frac{1}{5}\right)^{50}\)< 1

\(\Rightarrow M=\frac{1-\left(\frac{1}{5}\right)^{50}}{4}< \frac{1}{4}\)

7 tháng 7 2018

\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)(1)

\(\Rightarrow5M=1+\frac{1}{5}+...+\left(\frac{1}{5}\right)^{49}\)(2)

Lấy (2)-(1) ta có

\(\Rightarrow4M=1-\left(\frac{1}{5}\right)^{50}\)

\(\Rightarrow M=\frac{1-\frac{1}{5^{50}}}{4}\)

Do \(1-\frac{1}{5^{50}}< 1\)

\(\Rightarrow M< \frac{1}{4}\)

22 tháng 10 2016

\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)

\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\)

\(5M=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)

\(5M=1+\frac{1}{5}+...+\frac{1}{5^{49}}\)

\(5M-M=\left(1+\frac{1}{5}+...+\frac{1}{5^{49}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{50}}\right)\)

\(4M=1-\frac{1}{5^{50}}\)

\(M=\frac{1-\frac{1}{5^{50}}}{4}< \frac{1}{4}=0,25\)

Đpcm

22 tháng 10 2016

Cảm ơn, cảm ơn rất nhiều!!!

15 tháng 9 2019

anh tốt ghê đăng lên giúp em đấy

anh đăng lên nhờ người giúp nhưng ko có ai ☹️ ☹️ ☹️

13 tháng 3 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)

\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)

\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)

13 tháng 3 2019

3/\(7a+b=0\Rightarrow b=-7a\)

\(f\left(x\right)=ax^2-7ax+c\).Ta có: \(f\left(10\right)=100a-70a+c=30a+c\)

\(f\left(-3\right)=30a+c\).Nhân theo vế ta có đpcm:

\(f\left(10\right).f\left(-3\right)=\left(30a+c\right)^2\ge0\) (đúng)

16 tháng 9 2018

Dễ mà bạn.