Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+59}\)
\(M=\frac{1}{\frac{3.\left(3+1\right)}{2}}+\frac{1}{\frac{4.\left(4+1\right)}{2}}+\frac{1}{\frac{5.\left(5+1\right)}{2}}+...+\frac{1}{\frac{59.\left(59+1\right)}{2}}\)
\(M=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+\frac{1}{\frac{5.6}{2}}+...+\frac{1}{\frac{59.60}{2}}\)
\(M=\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{59.60}\)
\(M=2.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{59.60}\right)\)
\(M=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\right)\)
\(M=2.\left(\frac{1}{3}-\frac{1}{60}\right)\)
\(M< 2.\frac{1}{3}\)
\(M< \frac{2}{3}\)
Mik lười quá bạn tham khảo câu 3 tại đây nhé:
Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath
\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)
\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)
\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)
\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)
\(M=\frac{1}{3^2}+\frac{2}{3^3}+...+\frac{10}{3^{11}}\)
\(\Rightarrow3M=\frac{1}{3}+\frac{2}{3^2}+...+\frac{10}{3^{10}}\)
\(\Rightarrow3M-M=\frac{1}{3}+\frac{2}{3^2}-\frac{1}{3^2}+\frac{3}{3^3}-\frac{2}{3^3}+...+\frac{10}{3^{10}}-\frac{9}{3^{10}}-\frac{10}{3^{11}}\)
\(\Rightarrow2M=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}-\frac{10}{3^{11}}=A-\frac{10}{3^{11}}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}+\frac{1}{3^{10}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\)
\(\Rightarrow3A-A=1-\frac{1}{3^{10}}\)
\(\Rightarrow2A=1-\frac{1}{3^{10}}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{10}}\Rightarrow A< \frac{1}{2}\)
\(\Rightarrow2M=A-\frac{10}{3^{11}}< A< \frac{1}{2}\)
\(\Rightarrow M< \frac{1}{4}\)
a)Ta có: \(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)
\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)
... . . . .
\(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)
\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}< 1^{\left(đpcm\right)}\)
b) Ta có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
Suy ra \(\frac{2}{5}< S\) (1)
Ta lại có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)
Từ đó suy ra S < 8/9
Từ (1) và (2) suy ra đpcm
\(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot.....\cdot\frac{899}{30^2}\)
\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot.....\cdot\frac{29\cdot31}{30\cdot30}\)
\(=\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\frac{3}{4}\cdot\frac{5}{4}\cdot....\cdot\frac{29}{30}\cdot\frac{31}{30}\)
\(=\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{29}{30}\right)\cdot\left(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot....\cdot\frac{31}{30}\right)\)
\(=\frac{1}{30}\cdot\frac{31}{2}\)
\(=\frac{31}{60}\)
b, \(A=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Ta có:
\(\frac{3}{15}< \frac{3}{10}=\frac{3}{10}\)
\(\frac{3}{15}< \frac{3}{11}< \frac{3}{10}\)
\(\frac{3}{15}< \frac{3}{12}< \frac{3}{10}\)
\(\frac{3}{15}< \frac{3}{13}< \frac{3}{10}\)
\(\frac{3}{15}< \frac{3}{14}< \frac{3}{10}\)
\(\Rightarrow\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}< \frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)
\(\Rightarrow\frac{3\cdot5}{15}< A< \frac{3\cdot5}{10}\)
\(\Rightarrow1< A< \frac{15}{10}=\frac{3}{2}\)
Mà \(\frac{3}{2}< 2\)
\(\Rightarrow1< A< 2\)
c ,Ta có
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)+\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)