Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A: “∀ n ∈ N: n chia hết cho n”
A− : “∃ n ∈ N: n không chia hết cho n”.
A− đúng vì với n = 0 thì n không chia hết cho n.
đề có sai o bn
đề phải là : xét tính đúng sai của mệnh đề và lập mệnh đề phủ định của nó.
∀n∈N; n2 + 1 không chia hết cho 4 mới đúng chứ .
Phủ định:
\(\overline{A}="\forall x\in R;x^2-6x+9>0"\)
Mệnh đề phủ định là mệnh đề sai
Phản ví dụ: \(x=3\) thì \(x^2-6x+9=0\)
Mệnh đề đúng.
Vì \(\left(2n-1\right)^2-1=4n^2-4n+1-1=4\left(n^2-n\right)⋮4,\forall n\inℕ\)
Phủ định: \(\exists n\inℕ,\left(2n-1\right)^2-1⋮̸4\)
\(\left(2n-1\right)^2-1\)
\(=4n^2-4n+1-1\)
\(=4n^2-4n\)
\(=4n\left(n-1\right)⋮4\forall n\)
Vậy mệnh đề trên đúng
Mệnh đề phủ định của mệnh đề trên
\(\exists x\in R:\left(2n-1\right)^2-1\) không chia hết cho 4
ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8
Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai
Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn
Vậy n+8 và n+1 là số chính phương
\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)
\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)
\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)
\(\Leftrightarrow9\left(2n+7\right)=9^2\)
\(\Leftrightarrow2n-7=9\)
\(\Leftrightarrow n=8\)
Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)
+) Mệnh đề phủ định của mệnh đề P là \(\overline P \): “5,15 không phải là một số hữu tỉ”
Mệnh đề P đúng, \(\overline P \) sai vì \(5,15 = \frac{{103}}{{20}} \in \mathbb{Q}\), là một số hữu tỉ.
+) Mệnh đề phủ định của mệnh đề Q là \(\overline Q \): “2 023 không phải là số chẵn” (hoặc “2 023 là số lẻ”)
Mệnh đề Q sai, \(\overline Q \) đúng vì 2 023 có chữ số tận cùng là \(3 \ne \left\{ {0;2;4;6;8} \right\}\), đo đó 2 023 không phải là số chẵn.
P: đúng
phủ định: "5,15 không phải số hữu tỉ"
Q: sai
Phủ định: "1023 không phải số chẵn"