Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)
\(=x^2y^2+xy-x^2y+xy^2+xy+1-x+y+x^2y+x-x^2+xy-xy^2-y+xy-y^2\)
\(=x^2y^2+2xy-x^2-y^2+1\)
a) \(a^5+a^3-a^2-1\)
\(=a^5+a^4+a^3+a^3+a^2+a-a^4-a^3-a^2-a^2-a-1\)
\(=a^3\left(a^2+a+1\right)+a\left(a^2+a+1\right)-a^2\left(a^2+a+1\right)-\left(a^2+a+1\right)\)
\(=\left(a^3+a-a^2-1\right)\left(a^2+a+1\right)\)
\(=\left[\left(a^3-1\right)-a\left(a-1\right)\right]\left(a^2+a+1\right)\)
\(=\left[\left(a-1\right)\left(a^2+a+1\right)-a\left(a-1\right)\right]\left(a^2+a+1\right)\)
\(=\left(a-1\right)\left(a^2+a+1-a\right)\left(a^2+a+1\right)\)
\(=\left(a-1\right)\left(a^2+1\right)\left(a^2+a+1\right)\)
b) \(27a^2b^2-18ab+3\)
\(=3\left(9a^2b^2-6ab+1\right)\)
\(=3\left(3ab-1\right)^2\)
c) \(4-x^2-2xy-y^2\)
\(=4-\left(x+y\right)^2\)
\(=\left(2-x-y\right)\left(2+x+y\right)\)
a: \(=x\left[49-x^2\left(2x+1\right)^2\right]\)
\(=x\left[49-\left(2x^2+x\right)^2\right]\)
\(=x\left[\left(7-2x^2-x\right)\left(7+2x^2+x\right)\right]\)
b: \(=5\left[25x^2-\left(y^2-4y+4\right)\right]\)
\(=5\left[\left(5x-y+2\right)\left(5x+y-2\right)\right]\)
c: \(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x\right)\left(1+x+x^2\right)-4x\left(x-1\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
e: =(x-9)(x+6)
a) \(x^2+4y^2+4xy\)
\(=x^2+2.x.2y+\left(2y\right)^2\)
\(=\left(x+2y\right)^2\)
b) \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x\)
\(=4xy\)
c) \(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x-1\right)\)
a) \(x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)\)
1, (x+y+4). (x+y-4)=(x+y)2-42=(x+y)2-16
2, (x-y+6). (x+y-6)=(x+y)2-62=(x+y)2-36
3, (x+2y+3z). (2y+3z-x)=(2y+3z)2-x2
\(1.\left[\left(x+y\right)-4\right]\left[\left(x+y\right)+4\right]=\left(x+y\right)^2-4^2\)
a) \(49x^2-56x+16\)
\(=\left(7x-4\right)^2\)
\(=\left(7.2-4\right)^2=100\)
b) mk chỉnh lại đề
\(27x^3+54x^2+36x+8\)
\(=\left(3x+2\right)^3\)
\(=\left[3.\left(-2\right)+2\right]^3=-64\)
c) \(\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x+1\right)\left(x^2+x+1\right)+3\left(x-1\right)^2\)
\(=6x^2+7x+5\)
\(=6.\left(-\frac{2}{5}\right)^2+7.\left(-\frac{2}{5}\right)+5\)
\(=\frac{79}{25}\)
Đề là sao ? =)
Bạn đưa đề vậy giúp sao đc
Hok tốt :)
de chi the thi