Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn chú ý ng ta noi ( la sô nguyen) thi duong nhien tử phai chia hêt cho mẫu;
m2 -n2 :het mn là phai rùi
=> n2 : het cho m thi bn tach tu thành 2 ps giàn uoc la biet liên
( em chi hoc lop6 nghe anh nhưng k bao gio sai)
\(A=mn\left(m^2-n^2\right)\) (1)
\(A=mn\left(n-m\right)\left(n+m\right)\)(1)
1.- với A dạng (1) ta có (m^2 -n^2) luôn chia hết cho 3 { số chính phương luôn có dạng 3k hoặc 3k+1}
2.-Với A dạng (2)
2.1- nếu n hoặc m chẵn hiển nhiên A chia hết cho 2
2.1- nếu n và m lẻ thì (n+m) chia hết cho 2
Vậy: A chia hết cho 2&3 {2&3 ntố cùng nhau) => A chia hết cho 6 => dpcm
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:
m2+1>=2m(1)
n2+1>=2n (2)
Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)
b/ Ta có: (a-b)2>= 0
<=> a2 +b2-2ab>=0
<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)
<=> (a+b)2>= 4ab
<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0)
<=> (a+b)/ab>= 4/(a+b) (3)
Mà: 1/a+1/b=(a+b)/ab (4)
Từ (3) và (4)=> 1/a+1/b>=4/(a+b)
<=> (a+b)(1/a+1/b)>=4 (đpcm)
Đặt \(\frac{m^2-n^2}{mn}=a\)
=>\(m^2-n^2=mn.a\)
Vì \(\frac{m^2-n^2}{mn}\)là số nguyên
=>a là số nguyên
mà \(m^2-n^2=mn.a\)
=>\(m^2-n^2\) chia hết cho mn
mà mn chia hết cho m
=>\(m^2-n^2\)chia hết cho m
Vì \(m^2\) chia hết cho m
=>\(n^2\)chia hết cho m
thanks nhìu nhak LÊ CHÍ CƯỜNG