Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tana=\sqrt{3}\)
=>\(\dfrac{sina}{cosa}=\sqrt{3}\)
=>\(sina=\sqrt{3}\cdot cosa\)
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=1+3=4\)
=>\(cos^2a=\dfrac{1}{4}\)
=>\(cosa=\dfrac{1}{2}\)
=>\(sina=\dfrac{\sqrt{3}}{2}\)
\(A=\dfrac{sin^2a-cos^2a}{sina\cdot cosa}\)
\(=\dfrac{\dfrac{3}{4}-\dfrac{1}{4}}{\dfrac{\sqrt{3}}{2}\cdot\dfrac{1}{2}}=\dfrac{2}{4}:\dfrac{\sqrt{3}}{4}=\dfrac{2}{\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)
3. Cho tam giác ABC vuông tại A . Vẽ hình và thiết lập các hệ thúc tính TSLG của góc B từ đó suy ra các hệ thức tính TSLG góc C
Bài 2:
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a\cdot cos^2a\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)
\(=1-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)
=1
\(A=\dfrac{\left(sina+cosa\right)\left(sin^2a-sina\cdot cosa+cos^2a\right)}{cosa\cdot sina\left(2cosa+sina\right)}\)
\(=\dfrac{\left(sina+cosa\right)\left(1-sina\cdot cosa\right)}{cosa\cdot sina\left(2\cdot cosa+sina\right)}\)
\(1+tan^2a=\dfrac{1}{cos^2a}=1+\dfrac{9}{25}=\dfrac{34}{25}\)
\(\Leftrightarrow cosa=\dfrac{5}{\sqrt{34}}\)
=>\(sina=\dfrac{3}{\sqrt{34}}\)
\(=\dfrac{\left(sina+cosa\right)\left(1-sina\cdot cosa\right)}{cosa\cdot sina\left(2\cdot cosa+sina\right)}\)
\(=\dfrac{\left[\left(\dfrac{3}{\sqrt{34}}+\dfrac{5}{\sqrt{34}}\right)\left(1-\dfrac{15}{34}\right)\right]}{\dfrac{15}{34}\cdot\left(\dfrac{10}{\sqrt{34}}+\dfrac{3}{\sqrt{34}}\right)}\)
\(=\dfrac{\dfrac{8}{\sqrt{34}}\cdot\dfrac{19}{34}}{\dfrac{15}{34}\cdot\dfrac{13}{\sqrt{34}}}=\dfrac{8\cdot19}{15\cdot13}=\dfrac{152}{195}\)