\(\ne\) 0 và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Leftrightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

=> b+c+d = a+c+d =a+b+d =a+b+c 

=> a=b=c=d

Vậy T =1+1+1+1 =4

8 tháng 3 2018

\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Vì \(a+b+c+d\ne0\) nên \(b+c+d=a+c+d=a+b+d=a+b+c\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow A=1+1+1+1=4\)

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

21 tháng 7 2016

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

=>3a=b+c+d

    3b=a+c+d

    3c=a+b+d

    3d=a+b+c

=>a=b=c=d

=>\(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

21 tháng 7 2016

4

19 tháng 11 2017

Ta có:\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)

=>\(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)

=>\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Vì các phân số trên có cùng tử. Nên các mẫu của phân số đó bằng nhau.

=>a=b=c=d

=>M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)=\(\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)=1+1+1+1=4

Vậy M=4

18 tháng 4 2017

\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

Vậy 3a= b+c+d     3b=c+d+a    3c=d+a+b    3d=a+b+c

Suy ra a=b=c=d

Thay vào ta có M=1+1+1+1=4

BẤM ĐÚNG CHO MÌNH NHÉ

20 tháng 10 2018

Q= (Q+1) -(1-Q)

good luck!

21 tháng 9 2016

25361

4 tháng 8 2016

áp dụng tính chất dẫy tỉ số = nhau ta được 

b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d= b+c+d+c+d+a+a+b+d+a+b+c / a+b+c+d = 3 

do b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d = k 

suy ra k =3 .leuleuđơn giản vậy thôi

4 tháng 8 2016

k = 3  có đúng ko bạn 

26 tháng 6 2017

Câu 1:

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\)

Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\) (1)

\(\frac{cx-az}{b}=\frac{ack-ack}{b}=0\) (2)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\) (3)

Từ (1),(2),(3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

Câu 2:

Theo đề bài ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\), thêm 1 vào mỗi phân số ta được:

\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

\(\Rightarrow\left(a+b+c\right)\cdot\frac{1}{b+c}=\left(a+b+c\right)\cdot\frac{1}{a+c}=\left(a+b+c\right)\cdot\frac{1}{a+b}\)

Vì a,b,c khác nhau và khác 0 nên đẳng thức xảy ra chỉ khi a + b + c = 0 => \(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

Thay vào P ta được:

\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

Vậy P = -3

Câu 3:

Theo đề bài ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\), bớt 1 ở mỗi phân số ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

- Nếu a + b + c + d \(\ne\) 0 => a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4

- Nếu a + b + c + d = 0 => a + b = -(c + d)

                                        b + c = -(d + a)

                                        c + d = -(a + b)

                                        d + a = -(b + c)

Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4