Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\left(\frac{2}{2a-b}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\left(\frac{-2\left(b+2a\right)}{\left(b-2a\right)\left(b+2a\right)}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4\left(b-2a\right)}{\left(2a+b\right)\left(b-2a\right)}\right):\left(\frac{a\left(4a^2-b^2\right)}{4a^2-b^2}+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\frac{-2b-4a+6b-4b+8a}{\left(b-2a\right)\left(b+2a\right)}:\frac{4a^3-ab^2+4a^2+b^2}{4a^2-b^2}\)
\(=\frac{4a}{\left(b-2a\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)
\(=\frac{-4a}{\left(2a-b\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)
\(=.\frac{-4a}{4a^3-ab^2+4a^2+b^2}\)
b) ĐKXĐ: \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)
Ta thấy \(a=\frac{1}{3};b=2\)thỏa mãn điều kiện \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)nên thay vào A ta được:
bạn thay vào tự tính nhé mà cái phần rút gọn bạn vừa làm vừa check giùm bài mik nhé =)) sợ sai
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(A=\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{a+b+a-b}{(a-b)(a+b)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=(2a).\frac{a^2+b^2+a^2-b^2}{(a^2-b^2)(a^2+b^2)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=4a^3.\frac{a^4+b^4+a^4-b^4}{(a^4-b^4)(a^4+b^4)}+\frac{8a^7}{a^8+b^8}=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}=8a^7.\frac{a^8+b^8+a^8-b^8}{(a^8-b^8)(a^8+b^8)}\)
\(=\frac{16a^{15}}{a^{16}-b^{16}}\)
--------------
\(B=\frac{1}{a(a+1)}+\frac{1}{(a+1)(a+2)}+\frac{1}{(a+2)(a+3)}=\frac{(a+1)-a}{a(a+1)}+\frac{(a+2)-(a+1)}{(a+1)(a+2)}+\frac{(a+3)-(a+2)}{(a+2)(a+3)}\)
\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}\)
\(=\frac{1}{a}-\frac{1}{a+3}=\frac{3}{a(a+3)}\)
Bài 2:
Bạn tham khảo lời giải tương tự tại link sau:
Câu hỏi của Law Trafargal - Toán lớp 8 | Học trực tuyến
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng Cauchy, ta có:
\(a^4+b^2\ge2\sqrt{a^4b^2}=2a^2b\)
\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}\le\frac{1}{2a^2b+2ab^2}\)
Tượng tự:
\(\frac{1}{b^4+a^2+2a^2b}\le\frac{1}{2a^2b+2ab^2}\)
\(\Rightarrow A\le\frac{2}{2ab\left(a+b\right)}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}=2\)\(\Leftrightarrow\frac{a+b}{ab}=2\Rightarrow a+b=2ab\)
\(\Rightarrow A\le\frac{2}{\left(a+b\right)^2}\)
Áp dụng Schwarzt: \(2=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge a+b\ge2\Rightarrow\left(a+b\right)^2\ge4\)
\(\Rightarrow A\le\frac{2}{4}=\frac{1}{2}\)
Dấu = xảy ra khi a=b=1
Áp dụng bđt cosi ta có :
A < = 1/2a^2b+2/ab^2 + 1/2ab^2+2a^2b
= 1/2ab . (1/a+b + 1/a+b) = 1/2ab . 2/a+b = 1/(a+b).(ab)
< = 1/\(\sqrt{ab}.2.ab\) = 1/2\(\sqrt{ab}^3\)
Có : 2 = 1/a + 1/b >= 2\(\sqrt{\frac{1}{ab}}\)
=> \(\sqrt{\frac{1}{ab}}\)< = 1
=> 1/ab < = 1
=> ab > =1
=> A < = 1/2.1 = 1/2
Dấu "=" xảy ra <=> a=b=1
Vậy GTLN của A = 1/2 <=> a=b=1
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
c) \(\frac{a\left(a^2-ab+b^2\right)}{b\left(a+b\right)\left(a^2-ab+b^2\right)}\)
=\(\frac{a}{b\left(a+b\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn xem lời giải ở đây nhé:
Câu hỏi của AgustD - Toán lớp 9 - Học toán với OnlineMath
\(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\Rightarrow2>=\frac{4}{a+b}\Rightarrow a+b>=2\) (bđt cauchy schwarz adangj engel)
\(a^4+b^2>=2\sqrt{a^4b^2}=2a^2b;a^2+b^4>=2\sqrt{a^2b^4}>=2ab^2;\frac{1}{a}+\frac{1}{b}>=2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}\Rightarrow2>=\frac{2}{\sqrt{ab}}\Rightarrow ab>=1\)(bđt cosi)
\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}+\frac{1}{a^2+b^4+2a^2b}< =\frac{1}{2a^2b+2ab^2}+\frac{1}{2ab^2+2a^2b}=\frac{2}{2a^2b+2ab^2}=\frac{2}{2ab\left(a+b\right)}\)
\(=\frac{1}{ab\left(a+b\right)}< =\frac{1}{1\cdot2}=\frac{1}{2}\)
dấu = xảy ra khi a=b=1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=a+\frac{\left(2a+b\right)\left(2+b\right)-\left(2a-b\right)\left(2-b\right)}{4-b^2}-\frac{4a}{4-b^2}.\)
\(=a+\frac{4b\left(a+1\right)-4a}{4-b^2}\)
Ta có \(4ab+4b-4a=4\left[\frac{a^2}{a+1}+\frac{a}{a+1}-4a\right]=-12a\)
\(4-b^2=4-\frac{a^2}{\left(a+1\right)^2}=\frac{4\left(a^2+2a+1\right)-a^2}{\left(a+1\right)^2}=\frac{3a^2+8a+4}{\left(a+1\right)^2}\)
\(\Rightarrow M=a+\frac{-12a\left(a+1\right)^2}{3a^2+8a+4}\)
\(=-\frac{9a^3+16a^2+8a}{3a^2+8a+4}\)
\(M=a+\frac{2a+b}{2-b}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)
\(=a-\frac{2a+b}{b-2}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)
\(=a-\frac{\left(2a+b\right)\left(2+b\right)+\left(2a-b\right)\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}+\frac{4a}{b^2-4}\)
\(=a-\frac{4b\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a-\frac{4\frac{a}{a+1}\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a-\frac{4a}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a\)